Lexical Syntax
Scala programs are written using the Unicode Basic Multilingual Plane
(BMP) character set; Unicode supplementary characters are not presently supported.
This chapter defines the two modes of Scala's
lexical syntax, the Scala mode and the XML mode.
If not otherwise mentioned, the following descriptions of Scala tokens refer
to Scala mode, and literal characters (marked as c) refer to the ASCII fragment
\u0000 – \u007F.
In Scala mode, Unicode escapes are replaced by the corresponding Unicode character with the given hexadecimal code.
To construct tokens, characters are distinguished according to the following classes (Unicode general category given in parentheses):
- Whitespace characters.
\u0020 | \u0009 | \u000D | \u000A. - Letters, which include lower case letters (
Ll), upper case letters (Lu), titlecase letters (Lt), other letters (Lo), letter numerals (Nl) and the two characters\u0024 "$"and\u005F "_". - Digits
"0" | … | "9". - Parentheses
"(" | ")" | "[" | "]" | "{" | "}". - Delimiter characters
"`" | "'" | """ | "." | ";" | ",". - Operator characters. These consist of all printable ASCII characters
(
\u0020-\u007E) that are in none of the sets above, mathematical symbols (Sm) and other symbols (So).
Identifiers
There are three ways to form an identifier.
First, an identifier can start with a letter which can be followed by
an arbitrary sequence of letters and digits.
This may be followed by underscore ‘_‘ characters and another string composed of
either letters and digits or of operator characters.
Second, an identifier can start with an operator
character followed by an arbitrary sequence of operator characters.
The preceding two forms are called plain identifiers.
Finally, an identifier may also be formed by an arbitrary string between
back-quotes (host systems may impose some restrictions on which
strings are legal for identifiers).
The identifier then is composed of all characters excluding the backquotes themselves.
As usual, a longest match rule applies. For instance, the string big_bob++=`def`
decomposes into the three identifiers big_bob, ++=, and def.
The rules for pattern matching further distinguish between
variable identifiers, which start with a lower case letter, and
constant identifiers, which do not. For this purpose,
underscore ‘_‘ is taken as lower case, and the ‘$’ character
is taken as upper case.
The ‘$’ character is reserved for compiler-synthesized identifiers. User programs should not define identifiers which contain ‘$’ characters.
The following names are reserved words instead of being members of the
syntactic class id of lexical identifiers.
The Unicode operators \u21D2 and \u2190 , which have the ASCII
equivalents => and <-, are also reserved.
Here are examples of identifiers:
Newline Characters
Scala is a line-oriented language where statements may be terminated by semi-colons or newlines. A newline in a Scala source text is treated as the special token ‘nl’ if the three following criteria are satisfied:
- The token immediately preceding the newline can terminate a statement.
- The token immediately following the newline can begin a statement.
- The token appears in a region where newlines are enabled.
The tokens that can terminate a statement are: literals, identifiers and the following delimiters and reserved words:
The tokens that can begin a statement are all Scala tokens except the following delimiters and reserved words:
A case token can begin a statement only if followed by a
class or object token.
Newlines are enabled in:
- all of a Scala source file, except for nested regions where newlines are disabled
- the interval between matching
{and}brace tokens, except for nested regions where newlines are disabled
Newlines are disabled in:
- the interval between matching
(and)parenthesis tokens, except for nested regions where newlines are enabled - the interval between matching
[and]bracket tokens, except for nested regions where newlines are enabled - the interval between a
casetoken and its matching=>token, except for nested regions where newlines are enabled - any regions analyzed in XML mode
Note that the brace characters of {...} escapes in XML and
string literals are not tokens,
and therefore do not enclose a region where newlines are enabled.
Normally, only a single nl token is inserted between two
consecutive non-newline tokens which are on different lines, even if there are multiple lines
between the two tokens.
However, if two tokens are separated by at
least one completely blank line (i.e a line which contains no
printable characters), then two nl tokens are inserted.
The Scala grammar (given in full here)
contains productions where optional nl tokens, but not
semicolons, are accepted.
This has the effect that a newline in one of these
positions does not terminate an expression or statement.
These positions can be summarized as follows:
Multiple newline tokens are accepted in the following places (note that a semicolon in place of the newline would be illegal in every one of these cases):
- between the condition of a conditional expression or while loop and the next following expression
- between the enumerators of a for-comprehension and the next following expression
- after the initial
typekeyword in a type definition or declaration
A single new line token is accepted
- in front of an opening brace ‘{’, if that brace is a legal continuation of the current statement or expression
- after an infix operator, if the first token on the next line can start an expression
- in front of a parameter clause
- after an annotation
The newline tokens between the two lines are not treated as statement separators.
With an additional newline character, the same code is interpreted as an object creation followed by a local block:
With an additional newline character, the same code is interpreted as two expressions:
With an additional newline character, the same code is interpreted as an abstract function definition and a syntactically illegal statement:
With an additional newline character, the same code is interpreted as an attribute and a separate statement (which is syntactically illegal).
Literals
There are literals for integer numbers, floating point numbers, characters, booleans, symbols, strings. The syntax of these literals is in each case same as in Java.
Integer Literals
Integer literals are usually of type Int, or of type
Long when followed by a L or
l suffix. Values of type Int are all integer
numbers between and , inclusive. Values of
type Long are all integer numbers between and
, inclusive. A compile-time error occurs if an integer literal
denotes a number outside these ranges.
However, if the expected type pt of a literal
in an expression is either Byte, Short, or Char
and the integer number fits in the numeric range defined by the type,
then the number is converted to type pt and the literal's type
is pt. The numeric ranges given by these types are:
Byte | to |
Short | to |
Char | to |
Floating Point Literals
Floating point literals are of type Float when followed by
a floating point type suffix F or f, and are
of type Double otherwise. The type Float
consists of all IEEE 754 32-bit single-precision binary floating point
values, whereas the type Double consists of all IEEE 754
64-bit double-precision binary floating point values.
If a floating point literal in a program is followed by a token starting with a letter, there must be at least one intervening whitespace character between the two tokens.
The phrase
1.toStringparses as three different tokens: the integer literal1, a., and the identifiertoString.
1.is not a valid floating point literal because the mandatory digit after the.is missing.
Boolean Literals
The boolean literals true and false are
members of type Boolean.
Character Literals
A character literal is a single character enclosed in quotes.
The character can be any Unicode character except the single quote
delimiter or \u000A (LF) or \u000D (CR);
or any Unicode character represented by either a
Unicode escape or by an escape sequence.
Note that although Unicode conversion is done early during parsing,
so that Unicode characters are generally equivalent to their escaped
expansion in the source text, literal parsing accepts arbitrary
Unicode escapes, including the character literal '\u000A',
which can also be written using the escape sequence '\n'.
String Literals
A string literal is a sequence of characters in double quotes.
The characters can be any Unicode character except the double quote
delimiter or \u000A (LF) or \u000D (CR);
or any Unicode character represented by either a
Unicode escape or by an escape sequence.
If the string literal contains a double quote character, it must be escaped using
"\"".
The value of a string literal is an instance of class String.
Multi-Line String Literals
A multi-line string literal is a sequence of characters enclosed in
triple quotes """ ... """. The sequence of characters is
arbitrary, except that it may contain three or more consecutive quote characters
only at the very end. Characters
must not necessarily be printable; newlines or other
control characters are also permitted. Unicode escapes work as everywhere else, but none
of the escape sequences here are interpreted.
This would produce the string:
The Scala library contains a utility method
stripMarginwhich can be used to strip leading whitespace from multi-line strings.
The expressionevaluates to
Method
stripMarginis defined in class scala.collection.immutable.StringLike. Because there is a predefined implicit conversion fromStringtoStringLike, the method is applicable to all strings.
Interpolated string
Interpolated string consists of an identifier starting with a letter immediately followed by a string literal. There may be no whitespace characters or comments between the leading identifier and the opening quote ‘"’ of the string. The string literal in a interpolated string can be standard (single quote) or multi-line (triple quote).
Inside an interpolated string none of the usual escape characters are interpreted
(except for unicode escapes) no matter whether the string literal is normal
(enclosed in single quotes) or multi-line (enclosed in triple quotes).
Instead, there are two new forms of dollar sign escape.
The most general form encloses an expression in ‘${’ and ‘}’, i.e. ${expr}.
The expression enclosed in the braces that follow the leading ‘$’ character is of
syntactical category BlockExpr.
Hence, it can contain multiple statements, and newlines are significant.
Single ‘$’-signs are not permitted in isolation in a interpolated string.
A single ‘$’-sign can still be obtained by doubling the ‘$’ character: ‘$$’.
The simpler form consists of a ‘$’-sign followed by an identifier starting with
a letter and followed only by letters, digits, and underscore characters,
e.g $id. The simpler form is expanded by putting braces around the identifier,
e.g $id is equivalent to ${id}.
In the following, unless we explicitly state otherwise,
we assume that this expansion has already been performed.
The expanded expression is type checked normally.
Usually, StringContext will resolve to the default implementation in the scala package,
but it could also be user-defined.
Note that new interpolators can also be added through
implicit conversion of the built-in scala.StringContext.
One could write an extension
Escape Sequences
The following escape sequences are recognized in character and string literals.| charEscapeSeq | unicode | name | char |
|---|---|---|---|
‘\‘ ‘b‘ | \u0008 | backspace | BS |
‘\‘ ‘t‘ | \u0009 | horizontal tab | HT |
‘\‘ ‘n‘ | \u000a | linefeed | LF |
‘\‘ ‘f‘ | \u000c | form feed | FF |
‘\‘ ‘r‘ | \u000d | carriage return | CR |
‘\‘ ‘"‘ | \u0022 | double quote | " |
‘\‘ ‘'‘ | \u0027 | single quote | ' |
‘\‘ ‘\‘ | \u005c | backslash | \ |
It is a compile time error if a backslash character in a character or string literal does not start a valid escape sequence.
Symbol literals
A symbol literal 'x is a shorthand for the expression scala.Symbol("x") and
is of the literal type 'x.
Symbol is a case class, which is defined as follows.
The apply method of Symbol's companion object
caches weak references to Symbols, thus ensuring that
identical symbol literals are equivalent with respect to reference equality.
Whitespace and Comments
Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:
A single-line comment is a sequence of characters which starts with
// and extends to the end of the line.
A multi-line comment is a sequence of characters between /* and */.
Multi-line comments may be nested, but are required to be properly nested.
Therefore, a comment like /* /* */ will be rejected as having an unterminated comment.
Trailing Commas in Multi-line Expressions
If a comma (,) is followed immediately, ignoring whitespace, by a newline and
a closing parenthesis ()), bracket (]), or brace (}), then the comma is
treated as a "trailing comma" and is ignored. For example:
XML mode
In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to XML mode when encountering an opening angle bracket ‘<’ in the following circumstance: The ‘<’ must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately followed by a character starting an XML name.
The scanner switches from XML mode to Scala mode if either of these is true:
- the XML expression or the XML pattern started by the initial ‘<’ has been successfully parsed
- the parser encounters an embedded Scala expression or pattern and forces the Scanner back to normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of XML and Scala expressions adequately
Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.
The following value definition uses an XML literal with two embedded Scala expressions: