
Click to download PDF version of specificationhere

Table of Contents
Lexical Syntax

Identifiers, Names & Scopes

Types

Basic Declarations and Definitions

Classes and Objects

Expressions

Implicits

Pattern Matching

Top-Level Definitions

XML Expressions and Patterns

Annotations

The Scala Standard Library

Syntax Summary

References

Changelog

Authors and Contributors
Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp Haller,

Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz, Erik Stenman,

Matthias Zenger

Markdown Conversion by Iain McGinniss.

Preface
Scala is a Java-like programming language which unifies object-oriented and functional programming.

It is a pure object-oriented language in the sense that every value is an object. Types and behavior of

objects are described by classes. Classes can be composed using mixin composition.

Scala is designed to work seamlessly with less pure but mainstream object-oriented languages like Java.

Scala is a functional language in the sense that every function is a value. Nesting of function

definitions and higher-order functions are naturally supported. Scala also supports a general notion of

pattern matching which can model the algebraic types used in many functional languages.

Scala has been designed to interoperate seamlessly with Java. Scala classes can call Java methods,

create Java objects, inherit from Java classes and implement Java interfaces. None of this requires

interface definitions or glue code.

Click to download PDF version of specificationhere

Table of Contents
Lexical Syntax

Identifiers, Names & Scopes

Types

Basic Declarations and Definitions

Classes and Objects

Expressions

Implicits

Pattern Matching

Top-Level Definitions

XML Expressions and Patterns

Annotations

The Scala Standard Library

Syntax Summary

References

Changelog

Authors and Contributors
Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp Haller,

Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz, Erik Stenman,

Matthias Zenger

Markdown Conversion by Iain McGinniss.

Preface
Scala is a Java-like programming language which unifies object-oriented and functional programming.

It is a pure object-oriented language in the sense that every value is an object. Types and behavior of

objects are described by classes. Classes can be composed using mixin composition.

Scala is designed to work seamlessly with less pure but mainstream object-oriented languages like Java.

Scala is a functional language in the sense that every function is a value. Nesting of function

definitions and higher-order functions are naturally supported. Scala also supports a general notion of

pattern matching which can model the algebraic types used in many functional languages.

Scala has been designed to interoperate seamlessly with Java. Scala classes can call Java methods,

create Java objects, inherit from Java classes and implement Java interfaces. None of this requires

interface definitions or glue code.

Scala has been developed from 2001 in the programming methods laboratory at EPFL. Version 1.0 was

released in November 2003. This document describes the second version of the language, which was

released in March 2006. It acts a reference for the language definition and some core library modules.

It is not intended to teach Scala or its concepts; for this there are .other documents

Scala has been a collective effort of many people. The design and the implementation of version 1.0

was completed by Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Stéphane

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger, and the author. Iulian

Dragos, Gilles Dubochet, Philipp Haller, Sean McDirmid, Lex Spoon, and Geoffrey Washburn joined

in the effort to develop the second version of the language and tools. Gilad Bracha, Craig Chambers,

Erik Ernst, Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer,

Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have shaped the design of the

language through lively and inspiring discussions and comments on previous versions of this

document. The contributors to the Scala mailing list have also given very useful feedback that helped

us improve the language and its tools.

Scala has been developed from 2001 in the programming methods laboratory at EPFL. Version 1.0 was

released in November 2003. This document describes the second version of the language, which was

released in March 2006. It acts a reference for the language definition and some core library modules.

It is not intended to teach Scala or its concepts; for this there are .other documents

Scala has been a collective effort of many people. The design and the implementation of version 1.0

was completed by Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Stéphane

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger, and the author. Iulian

Dragos, Gilles Dubochet, Philipp Haller, Sean McDirmid, Lex Spoon, and Geoffrey Washburn joined

in the effort to develop the second version of the language and tools. Gilad Bracha, Craig Chambers,

Erik Ernst, Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer,

Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have shaped the design of the

language through lively and inspiring discussions and comments on previous versions of this

document. The contributors to the Scala mailing list have also given very useful feedback that helped

us improve the language and its tools.

1.

2.

3.

4.

5.

6.

1.1 Lexical Syntax
Scala programs are written using the Unicode Basic Multilingual Plane () character set; Unicode BMP

supplementary characters are not presently supported.

This chapter defines the two modes of Scala's lexical syntax, the Scala mode and the .XML mode

If not otherwise mentioned, the following descriptions of Scala tokens refer to , and literal Scala mode

characters (marked as) refer to the ASCII fragment – .c \u0000 \u007F

In Scala mode, are replaced by the corresponding Unicode character with the given Unicode escapes

hexadecimal code.

To construct tokens, characters are distinguished according to the following classes (Unicode general

category given in parentheses):

Whitespace characters. .\u0020 | \u0009 | \u000D | \u000A

Letters, which include lower case letters (), upper case letters (), titlecase letters (), Ll Lu Lt

other letters (), letter numerals () and the two characters and Lo Nl \u0024 "$" \u005F

."_"

Digits ."0" | … | "9"

Parentheses ."(" | ")" | "[" | "]" | "{" | "}"

Delimiter characters ."`" | "'" | """ | "." | ";" | ","

Operator characters. These consist of all printable ASCII characters (-) that \u0020 \u007E

are in none of the sets above, mathematical symbols () and other symbols ().Sm So

1.2 Identifiers

UnicodeEscape ::= ‘\’ ‘u’ {‘u’} hexDigit hexDigit hexDigit hexDigit

hexDigit ::= ‘0’ | … | ‘9’ | ‘A’ | … | ‘F’ | ‘a’ | … | ‘f’

op ::= opchar {opchar}

varid ::= lower idrest

boundvarid ::= varid

 | ‘`’ varid ‘`’

plainid ::= upper idrest

 | varid

 | op

id ::= plainid

 | ‘`’ { charNoBackQuoteOrNewline | UnicodeEscape | charEscapeSeq } ‘`’

idrest ::= {letter | digit} [‘_’ op]

1.

2.

3.

4.

5.

6.

1.1 Lexical Syntax
Scala programs are written using the Unicode Basic Multilingual Plane () character set; Unicode BMP

supplementary characters are not presently supported.

This chapter defines the two modes of Scala's lexical syntax, the Scala mode and the .XML mode

If not otherwise mentioned, the following descriptions of Scala tokens refer to , and literal Scala mode

characters (marked as) refer to the ASCII fragment – .c \u0000 \u007F

In Scala mode, are replaced by the corresponding Unicode character with the given Unicode escapes

hexadecimal code.

To construct tokens, characters are distinguished according to the following classes (Unicode general

category given in parentheses):

Whitespace characters. .\u0020 | \u0009 | \u000D | \u000A

Letters, which include lower case letters (), upper case letters (), titlecase letters (), Ll Lu Lt

other letters (), letter numerals () and the two characters and Lo Nl \u0024 "$" \u005F

."_"

Digits ."0" | … | "9"

Parentheses ."(" | ")" | "[" | "]" | "{" | "}"

Delimiter characters ."`" | "'" | """ | "." | ";" | ","

Operator characters. These consist of all printable ASCII characters (-) that \u0020 \u007E

are in none of the sets above, mathematical symbols () and other symbols ().Sm So

1.2 Identifiers

UnicodeEscape ::= ‘\’ ‘u’ {‘u’} hexDigit hexDigit hexDigit hexDigit

hexDigit ::= ‘0’ | … | ‘9’ | ‘A’ | … | ‘F’ | ‘a’ | … | ‘f’

op ::= opchar {opchar}

varid ::= lower idrest

boundvarid ::= varid

 | ‘`’ varid ‘`’

plainid ::= upper idrest

 | varid

 | op

id ::= plainid

 | ‘`’ { charNoBackQuoteOrNewline | UnicodeEscape | charEscapeSeq } ‘`’

idrest ::= {letter | digit} [‘_’ op]

There are three ways to form an identifier.

First, an identifier can start with a letter which can be followed by an arbitrary sequence of letters and

digits. This may be followed by underscore characters and another string composed of either ‘_‘

letters and digits or of operator characters.

Second, an identifier can start with an operator character followed by an arbitrary sequence of operator

characters. The preceding two forms are called .plain identifiers

Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may

impose some restrictions on which strings are legal for identifiers). The identifier then is composed of

all characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string decomposes into big_bob++=`def`

the three identifiers , , and .big_bob ++= def

The rules for pattern matching further distinguish between , which start with a lower variable identifiers

case letter, and , which do not. For this purpose, underscore is taken as lower constant identifiers ‘_‘

case, and the ‘$’ character is taken as upper case.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs should not define

identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic class of lexical id

identifiers.

The Unicode operators and , which have the ASCII equivalents and \u21D2 \u2190 => <-

, are also reserved.

Example

Here are examples of identifiers:

 abstract case catch class def

 do else extends false final

 finally for forSome if implicit

 macro import lazy match new

 null object override package private

 protected return sealed super this

 throw trait try true type

 val var while with yield

_ # @: = => <- <: <% >:

x Object maxIndex p2p empty_?

 ` ` ##### _y dot_product_+ yield *

__system _MAX_LEN_

There are three ways to form an identifier.

First, an identifier can start with a letter which can be followed by an arbitrary sequence of letters and

digits. This may be followed by underscore characters and another string composed of either ‘_‘

letters and digits or of operator characters.

Second, an identifier can start with an operator character followed by an arbitrary sequence of operator

characters. The preceding two forms are called .plain identifiers

Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may

impose some restrictions on which strings are legal for identifiers). The identifier then is composed of

all characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string decomposes into big_bob++=`def`

the three identifiers , , and .big_bob ++= def

The rules for pattern matching further distinguish between , which start with a lower variable identifiers

case letter, and , which do not. For this purpose, underscore is taken as lower constant identifiers ‘_‘

case, and the ‘$’ character is taken as upper case.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs should not define

identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic class of lexical id

identifiers.

The Unicode operators and , which have the ASCII equivalents and \u21D2 \u2190 => <-

, are also reserved.

Example

Here are examples of identifiers:

 abstract case catch class def

 do else extends false final

 finally for forSome if implicit

 macro import lazy match new

 null object override package private

 protected return sealed super this

 throw trait try true type

 val var while with yield

_ # @: = => <- <: <% >:

x Object maxIndex p2p empty_?

 ` ` ##### _y dot_product_+ yield *

__system _MAX_LEN_

1.

2.

3.

1.

2.

1.

2.

3.

4.

1.3 Newline Characters

Scala is a line-oriented language where statements may be terminated by semi-colons or newlines. A

newline in a Scala source text is treated as the special token ‘nl’ if the three following criteria are

satisfied:

The token immediately preceding the newline can terminate a statement.

The token immediately following the newline can begin a statement.

The token appears in a region where newlines are enabled.

The tokens that can terminate a statement are: literals, identifiers and the following delimiters and

reserved words:

The tokens that can begin a statement are all Scala tokens the following delimiters and reserved except

words:

A token can begin a statement only if followed by a or token.case class object

Newlines are enabled in:

all of a Scala source file, except for nested regions where newlines are disabled

the interval between matching and brace tokens, except for nested regions where newlines { }

are disabled

Newlines are disabled in:

the interval between matching and parenthesis tokens, except for nested regions where ()

newlines are enabled

the interval between matching and bracket tokens, except for nested regions where []

newlines are enabled

the interval between a token and its matching token, except for nested regions where case =>

newlines are enabled

any regions analyzed in XML mode

Note that the brace characters of escapes in XML and string literals are not tokens, and {...}

therefore do not enclose a region where newlines are enabled.

semi ::= ‘;’ | nl {nl}

 xml startthis null true false return type < - >

_)] }

 catch else extends finally forSome match

 with yield , . ; : = => <- <: <%

 # >: [)] }

1.

2.

3.

1.

2.

1.

2.

3.

4.

1.3 Newline Characters

Scala is a line-oriented language where statements may be terminated by semi-colons or newlines. A

newline in a Scala source text is treated as the special token ‘nl’ if the three following criteria are

satisfied:

The token immediately preceding the newline can terminate a statement.

The token immediately following the newline can begin a statement.

The token appears in a region where newlines are enabled.

The tokens that can terminate a statement are: literals, identifiers and the following delimiters and

reserved words:

The tokens that can begin a statement are all Scala tokens the following delimiters and reserved except

words:

A token can begin a statement only if followed by a or token.case class object

Newlines are enabled in:

all of a Scala source file, except for nested regions where newlines are disabled

the interval between matching and brace tokens, except for nested regions where newlines { }

are disabled

Newlines are disabled in:

the interval between matching and parenthesis tokens, except for nested regions where ()

newlines are enabled

the interval between matching and bracket tokens, except for nested regions where []

newlines are enabled

the interval between a token and its matching token, except for nested regions where case =>

newlines are enabled

any regions analyzed in XML mode

Note that the brace characters of escapes in XML and string literals are not tokens, and {...}

therefore do not enclose a region where newlines are enabled.

semi ::= ‘;’ | nl {nl}

 xml startthis null true false return type < - >

_)] }

 catch else extends finally forSome match

 with yield , . ; : = => <- <: <%

 # >: [)] }

Normally, only a single token is inserted between two consecutive non-newline tokens which are nl

on different lines, even if there are multiple lines between the two tokens. However, if two tokens are

separated by at least one completely blank line (i.e a line which contains no printable characters), then

two tokens are inserted.nl

The Scala grammar (given in full) contains productions where optional tokens, but not here nl

semicolons, are accepted. This has the effect that a newline in one of these positions does not terminate

an expression or statement. These positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon in place of the

newline would be illegal in every one of these cases):

between the condition of a or and the next following conditional expression while loop

expression

between the enumerators of a and the next following expressionfor-comprehension

after the initial keyword in a type type definition or declaration

A single new line token is accepted

in front of an opening brace ‘{’, if that brace is a legal continuation of the current statement or

expression

after an , if the first token on the next line can start an expressioninfix operator

in front of a parameter clause

after an annotation

Example

The newline tokens between the two lines are not treated as statement separators.

Example

 x if (> 0)

 x x = - 1

 x while (> 0)

 x x = / 2

 x to for (<- 1 10)

 println x()

type

 IntList List= [Int]

 Iteratornew [Int]

{

 x private var = 0

Normally, only a single token is inserted between two consecutive non-newline tokens which are nl

on different lines, even if there are multiple lines between the two tokens. However, if two tokens are

separated by at least one completely blank line (i.e a line which contains no printable characters), then

two tokens are inserted.nl

The Scala grammar (given in full) contains productions where optional tokens, but not here nl

semicolons, are accepted. This has the effect that a newline in one of these positions does not terminate

an expression or statement. These positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon in place of the

newline would be illegal in every one of these cases):

between the condition of a or and the next following conditional expression while loop

expression

between the enumerators of a and the next following expressionfor-comprehension

after the initial keyword in a type type definition or declaration

A single new line token is accepted

in front of an opening brace ‘{’, if that brace is a legal continuation of the current statement or

expression

after an , if the first token on the next line can start an expressioninfix operator

in front of a parameter clause

after an annotation

Example

The newline tokens between the two lines are not treated as statement separators.

Example

 x if (> 0)

 x x = - 1

 x while (> 0)

 x x = / 2

 x to for (<- 1 10)

 println x()

type

 IntList List= [Int]

 Iteratornew [Int]

{

 x private var = 0

With an additional newline character, the same code is interpreted as an object creation

followed by a local block:

Example

With an additional newline character, the same code is interpreted as two expressions:

Example

With an additional newline character, the same code is interpreted as an abstract function

definition and a syntactically illegal statement:

 hasNext def = true

 next x x def = { += 1; }

}

 Iteratornew [Int]

{

 x private var = 0

 hasNext def = true

 next x x def = { += 1; }

}

x < 0 ||

x > 10

x < 0 ||

x > 10

 func x def (: Int)

 y x y(: Int) = +

 func x def (: Int)

 y x y(: Int) = +

With an additional newline character, the same code is interpreted as an object creation

followed by a local block:

Example

With an additional newline character, the same code is interpreted as two expressions:

Example

With an additional newline character, the same code is interpreted as an abstract function

definition and a syntactically illegal statement:

 hasNext def = true

 next x x def = { += 1; }

}

 Iteratornew [Int]

{

 x private var = 0

 hasNext def = true

 next x x def = { += 1; }

}

x < 0 ||

x > 10

x < 0 ||

x > 10

 func x def (: Int)

 y x y(: Int) = +

 func x def (: Int)

 y x y(: Int) = +

Example

With an additional newline character, the same code is interpreted as an attribute and a separate

statement (which is syntactically illegal).

1.4 Literals
There are literals for integer numbers, floating point numbers, characters, booleans, symbols, strings.

The syntax of these literals is in each case same as in Java.

1.4.1 Integer Literals

Integer literals are usually of type , or of type when followed by a or suffix. Values Int Long L l

of type are all integer numbers between and , inclusive. Values of type are all Int Long

integer numbers between and , inclusive. A compile-time error occurs if an integer literal

denotes a number outside these ranges.

However, if the expected type of a literal in an expression is either , , or and pt Byte Short Char

the integer number fits in the numeric range defined by the type, then the number is converted to type pt

and the literal's type is . The numeric ranges given by these types are:pt

@serializable

 Data protected class { ... }

@serializable

 Data protected class { ... }

Literal ::= [‘-’] integerLiteral

 | [‘-’] floatingPointLiteral

 | booleanLiteral

 | characterLiteral

 | stringLiteral

 | interpolatedString

 | symbolLiteral

 | ‘null’

integerLiteral ::= (decimalNumeral | hexNumeral)

 [‘L’ | ‘l’]

decimalNumeral ::= ‘0’ | nonZeroDigit {digit}

hexNumeral ::= ‘0’ (‘x’ | ‘X’) hexDigit {hexDigit}

digit ::= ‘0’ | nonZeroDigit

nonZeroDigit ::= ‘1’ | … | ‘9’

Example

With an additional newline character, the same code is interpreted as an attribute and a separate

statement (which is syntactically illegal).

1.4 Literals
There are literals for integer numbers, floating point numbers, characters, booleans, symbols, strings.

The syntax of these literals is in each case same as in Java.

1.4.1 Integer Literals

Integer literals are usually of type , or of type when followed by a or suffix. Values Int Long L l

of type are all integer numbers between and , inclusive. Values of type are all Int Long

integer numbers between and , inclusive. A compile-time error occurs if an integer literal

denotes a number outside these ranges.

However, if the expected type of a literal in an expression is either , , or and pt Byte Short Char

the integer number fits in the numeric range defined by the type, then the number is converted to type pt

and the literal's type is . The numeric ranges given by these types are:pt

@serializable

 Data protected class { ... }

@serializable

 Data protected class { ... }

Literal ::= [‘-’] integerLiteral

 | [‘-’] floatingPointLiteral

 | booleanLiteral

 | characterLiteral

 | stringLiteral

 | interpolatedString

 | symbolLiteral

 | ‘null’

integerLiteral ::= (decimalNumeral | hexNumeral)

 [‘L’ | ‘l’]

decimalNumeral ::= ‘0’ | nonZeroDigit {digit}

hexNumeral ::= ‘0’ (‘x’ | ‘X’) hexDigit {hexDigit}

digit ::= ‘0’ | nonZeroDigit

nonZeroDigit ::= ‘1’ | … | ‘9’

Byte to

Short to

Char to

Example

1.4.2 Floating Point Literals

Floating point literals are of type when followed by a floating point type suffix or , and Float F f

are of type otherwise. The type consists of all IEEE 754 32-bit single-precision Double Float

binary floating point values, whereas the type consists of all IEEE 754 64-bit double-Double

precision binary floating point values.

If a floating point literal in a program is followed by a token starting with a letter, there must be at least

one intervening whitespace character between the two tokens.

Example

Example

The phrase parses as three different tokens: the integer literal , a , and the 1.toString 1 .

identifier .toString

Example

1. is not a valid floating point literal because the mandatory digit after the is missing..

1.4.3 Boolean Literals

 0 21 0xFFFFFFFF -42L

floatingPointLiteral ::= digit {digit} ‘.’ digit {digit} [exponentPart] [floatType]

 | ‘.’ digit {digit} [exponentPart] [floatType]

 | digit {digit} exponentPart [floatType]

 | digit {digit} [exponentPart] floatType

exponentPart ::= (‘E’ | ‘e’) [‘+’ | ‘-’] digit {digit}

floatType ::= ‘F’ | ‘f’ | ‘D’ | ‘d’

 e 0.0 1e30f 3.14159f 1.0 -100 .1

Byte to

Short to

Char to

Example

1.4.2 Floating Point Literals

Floating point literals are of type when followed by a floating point type suffix or , and Float F f

are of type otherwise. The type consists of all IEEE 754 32-bit single-precision Double Float

binary floating point values, whereas the type consists of all IEEE 754 64-bit double-Double

precision binary floating point values.

If a floating point literal in a program is followed by a token starting with a letter, there must be at least

one intervening whitespace character between the two tokens.

Example

Example

The phrase parses as three different tokens: the integer literal , a , and the 1.toString 1 .

identifier .toString

Example

1. is not a valid floating point literal because the mandatory digit after the is missing..

1.4.3 Boolean Literals

 0 21 0xFFFFFFFF -42L

floatingPointLiteral ::= digit {digit} ‘.’ digit {digit} [exponentPart] [floatType]

 | ‘.’ digit {digit} [exponentPart] [floatType]

 | digit {digit} exponentPart [floatType]

 | digit {digit} [exponentPart] floatType

exponentPart ::= (‘E’ | ‘e’) [‘+’ | ‘-’] digit {digit}

floatType ::= ‘F’ | ‘f’ | ‘D’ | ‘d’

 e 0.0 1e30f 3.14159f 1.0 -100 .1

The boolean literals and are members of type .true false Boolean

1.4.4 Character Literals

A character literal is a single character enclosed in quotes. The character can be any Unicode character

except the single quote delimiter or (LF) or (CR); or any Unicode character \u000A \u000D

represented by either a or by an .Unicode escape escape sequence

Example

Note that although Unicode conversion is done early during parsing, so that Unicode characters are

generally equivalent to their escaped expansion in the source text, literal parsing accepts arbitrary

Unicode escapes, including the character literal , which can also be written using the '\u000A'

escape sequence .'\n'

1.4.5 String Literals

A string literal is a sequence of characters in double quotes. The characters can be any Unicode

character except the double quote delimiter or (LF) or (CR); or any Unicode \u000A \u000D

character represented by either a or by an .Unicode escape escape sequence

If the string literal contains a double quote character, it must be escaped using ."\""

The value of a string literal is an instance of class .String

Example

Multi-Line String Literals

booleanLiteral ::= ‘true’ | ‘false’

characterLiteral ::= ‘'’ (charNoQuoteOrNewline | UnicodeEscape | charEscapeSeq) ‘'’

 'a' '\u0041' '\n' '\t'

stringLiteral ::= ‘"’ {stringElement} ‘"’

stringElement ::= charNoDoubleQuoteOrNewline | UnicodeEscape | charEscapeSeq

"Hello, world!\n"

"\"Hello,\" replied the world."

The boolean literals and are members of type .true false Boolean

1.4.4 Character Literals

A character literal is a single character enclosed in quotes. The character can be any Unicode character

except the single quote delimiter or (LF) or (CR); or any Unicode character \u000A \u000D

represented by either a or by an .Unicode escape escape sequence

Example

Note that although Unicode conversion is done early during parsing, so that Unicode characters are

generally equivalent to their escaped expansion in the source text, literal parsing accepts arbitrary

Unicode escapes, including the character literal , which can also be written using the '\u000A'

escape sequence .'\n'

1.4.5 String Literals

A string literal is a sequence of characters in double quotes. The characters can be any Unicode

character except the double quote delimiter or (LF) or (CR); or any Unicode \u000A \u000D

character represented by either a or by an .Unicode escape escape sequence

If the string literal contains a double quote character, it must be escaped using ."\""

The value of a string literal is an instance of class .String

Example

Multi-Line String Literals

booleanLiteral ::= ‘true’ | ‘false’

characterLiteral ::= ‘'’ (charNoQuoteOrNewline | UnicodeEscape | charEscapeSeq) ‘'’

 'a' '\u0041' '\n' '\t'

stringLiteral ::= ‘"’ {stringElement} ‘"’

stringElement ::= charNoDoubleQuoteOrNewline | UnicodeEscape | charEscapeSeq

"Hello, world!\n"

"\"Hello,\" replied the world."

A multi-line string literal is a sequence of characters enclosed in triple quotes . The """ ... """

sequence of characters is arbitrary, except that it may contain three or more consecutive quote

characters only at the very end. Characters must not necessarily be printable; newlines or other control

characters are also permitted. Unicode escapes work as everywhere else, but none of the escape

sequences are interpreted.here

Example

This would produce the string:

The Scala library contains a utility method which can be used to strip leading stripMargin

whitespace from multi-line strings.

The expression

evaluates to

Method is defined in class . Because stripMargin scala.collection.immutable.StringLike

there is a predefined from to , the method is implicit conversion String StringLike

applicable to all strings.

Interpolated string

stringLiteral ::= ‘"""’ multiLineChars ‘"""’

multiLineChars ::= {[‘"’] [‘"’] charNoDoubleQuote} {‘"’}

"""the present string

 spans three

 lines."""

the present string

 spans three

 lines.

"""the present string

 |spans three

stripMargin |lines.""".

the present string

spans three

lines.

A multi-line string literal is a sequence of characters enclosed in triple quotes . The """ ... """

sequence of characters is arbitrary, except that it may contain three or more consecutive quote

characters only at the very end. Characters must not necessarily be printable; newlines or other control

characters are also permitted. Unicode escapes work as everywhere else, but none of the escape

sequences are interpreted.here

Example

This would produce the string:

The Scala library contains a utility method which can be used to strip leading stripMargin

whitespace from multi-line strings.

The expression

evaluates to

Method is defined in class . Because stripMargin scala.collection.immutable.StringLike

there is a predefined from to , the method is implicit conversion String StringLike

applicable to all strings.

Interpolated string

stringLiteral ::= ‘"""’ multiLineChars ‘"""’

multiLineChars ::= {[‘"’] [‘"’] charNoDoubleQuote} {‘"’}

"""the present string

 spans three

 lines."""

the present string

 spans three

 lines.

"""the present string

 |spans three

stripMargin |lines.""".

the present string

spans three

lines.

https://www.scala-lang.org/api/current/scala/collection/immutable/StringLike.html

Interpolated string consists of an identifier starting with a letter immediately followed by a string

literal. There may be no whitespace characters or comments between the leading identifier and the

opening quote ‘"’ of the string. The string literal in a interpolated string can be standard (single quote)

or multi-line (triple quote).

Inside an interpolated string none of the usual escape characters are interpreted (except for unicode

escapes) no matter whether the string literal is normal (enclosed in single quotes) or multi-line

(enclosed in triple quotes). Instead, there are two new forms of dollar sign escape. The most general

form encloses an expression in ‘${’ and ‘}’, i.e. . The expression enclosed in the braces that ${expr}

follow the leading ‘$’ character is of syntactical category . Hence, it can contain multiple BlockExpr

statements, and newlines are significant. Single ‘$’-signs are not permitted in isolation in a interpolated

string. A single ‘$’-sign can still be obtained by doubling the ‘$’ character: ‘$$’.

The simpler form consists of a ‘$’-sign followed by an identifier starting with a letter and followed

only by letters, digits, and underscore characters, e.g . The simpler form is expanded by putting $id

braces around the identifier, e.g is equivalent to . In the following, unless we explicitly $id ${id}

state otherwise, we assume that this expansion has already been performed.

The expanded expression is type checked normally. Usually, will resolve to the StringContext

default implementation in the scala package, but it could also be user-defined. Note that new

interpolators can also be added through implicit conversion of the built-in .scala.StringContext

One could write an extension

1.4.6 Escape Sequences

The following escape sequences are recognized in character and string literals.

charEscapeSeq unicode name char

‘\‘ ‘b‘ \u0008 backspace BS

‘\‘ ‘t‘ \u0009 horizontal tab HT

‘\‘ ‘n‘ \u000a linefeed LF

interpolatedString ::= alphaid ‘"’ {printableChar (‘"’ | ‘$’) | escape} ‘"’

 | alphaid ‘"""’ {[‘"’] [‘"’] char (‘"’ | ‘$’) | escape} {‘"’} ‘"""’

escape ::= ‘$$’

 | ‘$’ id

 | ‘$’ BlockExpr

alphaid ::= upper idrest

 | varid

 StringInterpolation s StringContext implicit class (:) {

 id args def (: Any*) = ???

}

Interpolated string consists of an identifier starting with a letter immediately followed by a string

literal. There may be no whitespace characters or comments between the leading identifier and the

opening quote ‘"’ of the string. The string literal in a interpolated string can be standard (single quote)

or multi-line (triple quote).

Inside an interpolated string none of the usual escape characters are interpreted (except for unicode

escapes) no matter whether the string literal is normal (enclosed in single quotes) or multi-line

(enclosed in triple quotes). Instead, there are two new forms of dollar sign escape. The most general

form encloses an expression in ‘${’ and ‘}’, i.e. . The expression enclosed in the braces that ${expr}

follow the leading ‘$’ character is of syntactical category . Hence, it can contain multiple BlockExpr

statements, and newlines are significant. Single ‘$’-signs are not permitted in isolation in a interpolated

string. A single ‘$’-sign can still be obtained by doubling the ‘$’ character: ‘$$’.

The simpler form consists of a ‘$’-sign followed by an identifier starting with a letter and followed

only by letters, digits, and underscore characters, e.g . The simpler form is expanded by putting $id

braces around the identifier, e.g is equivalent to . In the following, unless we explicitly $id ${id}

state otherwise, we assume that this expansion has already been performed.

The expanded expression is type checked normally. Usually, will resolve to the StringContext

default implementation in the scala package, but it could also be user-defined. Note that new

interpolators can also be added through implicit conversion of the built-in .scala.StringContext

One could write an extension

1.4.6 Escape Sequences

The following escape sequences are recognized in character and string literals.

charEscapeSeq unicode name char

‘\‘ ‘b‘ \u0008 backspace BS

‘\‘ ‘t‘ \u0009 horizontal tab HT

‘\‘ ‘n‘ \u000a linefeed LF

interpolatedString ::= alphaid ‘"’ {printableChar (‘"’ | ‘$’) | escape} ‘"’

 | alphaid ‘"""’ {[‘"’] [‘"’] char (‘"’ | ‘$’) | escape} {‘"’} ‘"""’

escape ::= ‘$$’

 | ‘$’ id

 | ‘$’ BlockExpr

alphaid ::= upper idrest

 | varid

 StringInterpolation s StringContext implicit class (:) {

 id args def (: Any*) = ???

}

‘\‘ ‘f‘ \u000c form feed FF

‘\‘ ‘r‘ \u000d carriage return CR

‘\‘ ‘"‘ \u0022 double quote "

‘\‘ ‘'‘ \u0027 single quote '

‘\‘ ‘\‘ \u005c backslash \

It is a compile time error if a backslash character in a character or string literal does not start a valid

escape sequence.

1.4.7 Symbol literals

A symbol literal is a shorthand for the expression and is of the 'x scala.Symbol("x") literal type

. is a , which is defined as follows.'x Symbol case class

The method of 's companion object caches weak references to s, thus apply Symbol Symbol

ensuring that identical symbol literals are equivalent with respect to reference equality.

1.5 Whitespace and Comments
Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:

A single-line comment is a sequence of characters which starts with and extends to the end of the //

line.

A multi-line comment is a sequence of characters between and . Multi-line comments may be /* */

nested, but are required to be properly nested. Therefore, a comment like will be rejected /* /* */

as having an unterminated comment.

1.6 Trailing Commas in Multi-line Expressions
If a comma () is followed immediately, ignoring whitespace, by a newline and a closing parenthesis (,

), bracket (), or brace (), then the comma is treated as a "trailing comma" and is ignored. For)] }

example:

symbolLiteral ::= ‘'’ plainid

 scalapackage

 Symbol name final case class private (: String) {

 toString nameoverride def : String = "'" +

}

‘\‘ ‘f‘ \u000c form feed FF

‘\‘ ‘r‘ \u000d carriage return CR

‘\‘ ‘"‘ \u0022 double quote "

‘\‘ ‘'‘ \u0027 single quote '

‘\‘ ‘\‘ \u005c backslash \

It is a compile time error if a backslash character in a character or string literal does not start a valid

escape sequence.

1.4.7 Symbol literals

A symbol literal is a shorthand for the expression and is of the 'x scala.Symbol("x") literal type

. is a , which is defined as follows.'x Symbol case class

The method of 's companion object caches weak references to s, thus apply Symbol Symbol

ensuring that identical symbol literals are equivalent with respect to reference equality.

1.5 Whitespace and Comments
Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:

A single-line comment is a sequence of characters which starts with and extends to the end of the //

line.

A multi-line comment is a sequence of characters between and . Multi-line comments may be /* */

nested, but are required to be properly nested. Therefore, a comment like will be rejected /* /* */

as having an unterminated comment.

1.6 Trailing Commas in Multi-line Expressions
If a comma () is followed immediately, ignoring whitespace, by a newline and a closing parenthesis (,

), bracket (), or brace (), then the comma is treated as a "trailing comma" and is ignored. For)] }

example:

symbolLiteral ::= ‘'’ plainid

 scalapackage

 Symbol name final case class private (: String) {

 toString nameoverride def : String = "'" +

}

1.7 XML mode
In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to

XML mode when encountering an opening angle bracket ‘<’ in the following circumstance: The ‘<’

must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately

followed by a character starting an XML name.

The scanner switches from XML mode to Scala mode if either of these is true:

the XML expression or the XML pattern started by the initial ‘<’ has been successfully parsed

the parser encounters an embedded Scala expression or pattern and forces the Scanner back to

normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code

and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of

XML and Scala expressions adequately

Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.

Example

The following value definition uses an XML literal with two embedded Scala expressions:

foo(

 23,

 "bar",

 true,

)

(whitespace | ‘(’ | ‘{’) ‘<’ (XNameStart | ‘!’ | ‘?’)

 XNameStart ::= ‘_’ | BaseChar | Ideographic // as in W3C XML, but without ‘:’

 b val = book< >

 The Scala Language Specification titletitle< > </ >

 scalaBook version versionversion< >{ . }</ >

 scalaBook authors mkList authorsauthors< >{ . . ("", ", ", "")}</ >

 book</ >

1.7 XML mode
In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to

XML mode when encountering an opening angle bracket ‘<’ in the following circumstance: The ‘<’

must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately

followed by a character starting an XML name.

The scanner switches from XML mode to Scala mode if either of these is true:

the XML expression or the XML pattern started by the initial ‘<’ has been successfully parsed

the parser encounters an embedded Scala expression or pattern and forces the Scanner back to

normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code

and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of

XML and Scala expressions adequately

Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.

Example

The following value definition uses an XML literal with two embedded Scala expressions:

foo(

 23,

 "bar",

 true,

)

(whitespace | ‘(’ | ‘{’) ‘<’ (XNameStart | ‘!’ | ‘?’)

 XNameStart ::= ‘_’ | BaseChar | Ideographic // as in W3C XML, but without ‘:’

 b val = book< >

 The Scala Language Specification titletitle< > </ >

 scalaBook version versionversion< >{ . }</ >

 scalaBook authors mkList authorsauthors< >{ . . ("", ", ", "")}</ >

 book</ >

1.

2.

3.

4.

2.1 Identifiers, Names and Scopes
Names in Scala identify types, values, methods, and classes which are collectively called . entities

Names are introduced by local , , , or definitions and declarations inheritance import clauses package

 which are collectively called .clauses bindings

Bindings of different kinds have a precedence defined on them:

Definitions and declarations that are local, inherited, or made available by a package clause and

also defined in the same compilation unit as the reference to them, have highest precedence.

Explicit imports have next highest precedence.

Wildcard imports have next highest precedence.

Definitions made available by a package clause, but not also defined in the same compilation

unit as the reference to them, as well as imports which are supplied by the compiler but not

explicitly written in source code, have lowest precedence.

There are two different name spaces, one for and one for . The same name may designate a types terms

type and a term, depending on the context where the name is used.

A binding has a in which the entity defined by a single name can be accessed using a simple scope

name.

Scopes are nested. A binding in some inner scope bindings of lower precedence in the same shadows

scope as well as bindings of the same or lower precedence in outer scopes.

Note that shadowing is only a partial order. In the following example, neither binding of shadows x

the other. Consequently, the reference to in the last line of the block is ambiguous.x

A reference to an unqualified (type- or term-) identifier is bound by the unique binding, which

defines an entity with name in the same namespace as the identifier

shadows all other bindings that define entities with name in that namespace.

It is an error if no such binding exists. If is bound by an import clause, then the simple name is

taken to be equivalent to the qualified name to which is mapped by the import clause. If is bound

by a definition or declaration, then refers to the entity introduced by that binding. In that case, the

type of is the type of the referenced entity.

 x val = 1

locally {

 p X ximport . .

 x

}

1.

2.

3.

4.

2.1 Identifiers, Names and Scopes
Names in Scala identify types, values, methods, and classes which are collectively called . entities

Names are introduced by local , , , or definitions and declarations inheritance import clauses package

 which are collectively called .clauses bindings

Bindings of different kinds have a precedence defined on them:

Definitions and declarations that are local, inherited, or made available by a package clause and

also defined in the same compilation unit as the reference to them, have highest precedence.

Explicit imports have next highest precedence.

Wildcard imports have next highest precedence.

Definitions made available by a package clause, but not also defined in the same compilation

unit as the reference to them, as well as imports which are supplied by the compiler but not

explicitly written in source code, have lowest precedence.

There are two different name spaces, one for and one for . The same name may designate a types terms

type and a term, depending on the context where the name is used.

A binding has a in which the entity defined by a single name can be accessed using a simple scope

name.

Scopes are nested. A binding in some inner scope bindings of lower precedence in the same shadows

scope as well as bindings of the same or lower precedence in outer scopes.

Note that shadowing is only a partial order. In the following example, neither binding of shadows x

the other. Consequently, the reference to in the last line of the block is ambiguous.x

A reference to an unqualified (type- or term-) identifier is bound by the unique binding, which

defines an entity with name in the same namespace as the identifier

shadows all other bindings that define entities with name in that namespace.

It is an error if no such binding exists. If is bound by an import clause, then the simple name is

taken to be equivalent to the qualified name to which is mapped by the import clause. If is bound

by a definition or declaration, then refers to the entity introduced by that binding. In that case, the

type of is the type of the referenced entity.

 x val = 1

locally {

 p X ximport . .

 x

}

A reference to a qualified (type- or term-) identifier refers to the member of the type of which

has the name in the same namespace as the identifier. It is an error if is not a . The type value type

of is the member type of the referenced entity in .

Binding precedence implies that the way source is bundled in files affects name resolution. In

particular, imported names have higher precedence than names, defined in other files, that might

otherwise be visible because they are defined in either the current package or an enclosing package.

Note that a package definition is taken as lowest precedence, since packages are open and can be

defined across arbitrary compilation units.

The compiler supplies imports in a preamble to every source file. This preamble conceptually has the

following form, where braces indicate nested scopes:

These imports are taken as lowest precedence, so that they are always shadowed by user code, which

may contain competing imports and definitions. They also increase the nesting depth as shown, so that

later imports shadow earlier ones.

As a convenience, multiple bindings of a type identifier to the same underlying type is permitted. This

is possible when import clauses introduce a binding of a member type alias with the same binding

precedence, typically through wildcard imports. This allows redundant type aliases to be imported

without introducing an ambiguity.

 util package {

 scala utilimport .

 Randomclass

 Test App object extends {

 println util Random (new .) // scala.util.Random

 }

}

 java lang _import . .

{

 scala _import .

 {

 Predef _import .

 { /* source */ }

 }

}

 X T annotation tailrec object { type = . }

 Y T annotation tailrec object { type = . }

 Z object {

 X _ Y _ annotation tailrec T import . , . , .{ => } // OK, all T mean tailrec

 f f @T def : Int = { ; 42 } // error, f is not tail recursive

}

A reference to a qualified (type- or term-) identifier refers to the member of the type of which

has the name in the same namespace as the identifier. It is an error if is not a . The type value type

of is the member type of the referenced entity in .

Binding precedence implies that the way source is bundled in files affects name resolution. In

particular, imported names have higher precedence than names, defined in other files, that might

otherwise be visible because they are defined in either the current package or an enclosing package.

Note that a package definition is taken as lowest precedence, since packages are open and can be

defined across arbitrary compilation units.

The compiler supplies imports in a preamble to every source file. This preamble conceptually has the

following form, where braces indicate nested scopes:

These imports are taken as lowest precedence, so that they are always shadowed by user code, which

may contain competing imports and definitions. They also increase the nesting depth as shown, so that

later imports shadow earlier ones.

As a convenience, multiple bindings of a type identifier to the same underlying type is permitted. This

is possible when import clauses introduce a binding of a member type alias with the same binding

precedence, typically through wildcard imports. This allows redundant type aliases to be imported

without introducing an ambiguity.

 util package {

 scala utilimport .

 Randomclass

 Test App object extends {

 println util Random (new .) // scala.util.Random

 }

}

 java lang _import . .

{

 scala _import .

 {

 Predef _import .

 { /* source */ }

 }

}

 X T annotation tailrec object { type = . }

 Y T annotation tailrec object { type = . }

 Z object {

 X _ Y _ annotation tailrec T import . , . , .{ => } // OK, all T mean tailrec

 f f @T def : Int = { ; 42 } // error, f is not tail recursive

}

Similarly, imported aliases of names introduced by package statements are allowed, even though the

names are strictly ambiguous:

The reference to in the definition of is strictly ambiguous because is available by virtue of the C X C

package clause in a different file, and can't shadow the imported name. But because the references are

the same, the definition is taken as though it did shadow the import.

2.1.1 Example

Assume the following two definitions of objects named in packages and in separate X p q

compilation units.

The following program illustrates different kinds of bindings and precedences between them.

// c.scala

 p C package { class }

// xy.scala

 p _import .

 p X C package { class extends }

 q Y C package { class extends }

 p package {

 X x y object { val = 1; val = 2 }

}

 q package {

 X x y object { val = true; val = false }

}

 p package { // `X' bound by package clause

 Console _ import . // `println' bound by wildcard import

 Y object {

 println s ("L4: $X") // `X' refers to `p.X' here

 locally {

 q _ import . // `X' bound by wildcard import

 println s ("L7: $X") // `X' refers to `q.X' here

 X _ import . // `x' and `y' bound by wildcard import

 println s ("L9: $x") // `x' refers to `q.X.x' here

 locally {

 x val = 3 // `x' bound by local definition

 println s ("L12: $x") // `x' refers to constant `3' here

 locally {

 q X _ import . . // `x' and `y' bound by wildcard import

Similarly, imported aliases of names introduced by package statements are allowed, even though the

names are strictly ambiguous:

The reference to in the definition of is strictly ambiguous because is available by virtue of the C X C

package clause in a different file, and can't shadow the imported name. But because the references are

the same, the definition is taken as though it did shadow the import.

2.1.1 Example

Assume the following two definitions of objects named in packages and in separate X p q

compilation units.

The following program illustrates different kinds of bindings and precedences between them.

// c.scala

 p C package { class }

// xy.scala

 p _import .

 p X C package { class extends }

 q Y C package { class extends }

 p package {

 X x y object { val = 1; val = 2 }

}

 q package {

 X x y object { val = true; val = false }

}

 p package { // `X' bound by package clause

 Console _ import . // `println' bound by wildcard import

 Y object {

 println s ("L4: $X") // `X' refers to `p.X' here

 locally {

 q _ import . // `X' bound by wildcard import

 println s ("L7: $X") // `X' refers to `q.X' here

 X _ import . // `x' and `y' bound by wildcard import

 println s ("L9: $x") // `x' refers to `q.X.x' here

 locally {

 x val = 3 // `x' bound by local definition

 println s ("L12: $x") // `x' refers to constant `3' here

 locally {

 q X _ import . . // `x' and `y' bound by wildcard import

// println(s"L15: $x") // reference to `x' is ambiguous here

 X y import . // `y' bound by explicit import

 println s ("L17: $y") // `y' refers to `q.X.y' here

 locally {

 x val = "abc" // `x' bound by local definition

 p X _ import . . // `x' and `y' bound by wildcard import

// println(s"L21: $y") // reference to `y' is ambiguous here

 println s ("L22: $x") // `x' refers to string "abc" here

}}}}}}

// println(s"L15: $x") // reference to `x' is ambiguous here

 X y import . // `y' bound by explicit import

 println s ("L17: $y") // `y' refers to `q.X.y' here

 locally {

 x val = "abc" // `x' bound by local definition

 p X _ import . . // `x' and `y' bound by wildcard import

// println(s"L21: $y") // reference to `y' is ambiguous here

 println s ("L22: $x") // `x' refers to string "abc" here

}}}}}}

3.1 Types

We distinguish between first-order types and type constructors, which take type parameters and yield

types. A subset of first-order types called represents sets of (first-class) values. Value types value types

are either or .concrete abstract

Every concrete value type can be represented as a , i.e. a that refers to a class type type designator class

 , or as a representing an intersection of types, possibly with a that or a trait compound type refinement

further constrains the types of its members.

Abstract value types are introduced by and . Parentheses in types type parameters abstract type bindings

can be used for grouping.

Non-value types capture properties of identifiers that . For example, a are not values type constructor

does not directly specify a type of values. However, when a type constructor is applied to the correct

type arguments, it yields a first-order type, which may be a value type.

Non-value types are expressed indirectly in Scala. E.g., a method type is described by writing down a

method signature, which in itself is not a real type, although it gives rise to a corresponding method

. Type constructors are another example, as one can write type type Swap[m[_, _], a,b] = m

, but there is no syntax to write the corresponding anonymous type function directly.[b, a]

Type ::= FunctionArgTypes ‘=>’ Type

 | InfixType [ExistentialClause]

FunctionArgTypes ::= InfixType

 | ‘(’ [ParamType {‘,’ ParamType }] ‘)’

ExistentialClause ::= ‘forSome’ ‘{’ ExistentialDcl

 {semi ExistentialDcl} ‘}’

ExistentialDcl ::= ‘type’ TypeDcl

 | ‘val’ ValDcl

InfixType ::= CompoundType {id [nl] CompoundType}

CompoundType ::= AnnotType {‘with’ AnnotType} [Refinement]

 | Refinement

AnnotType ::= SimpleType {Annotation}

SimpleType ::= SimpleType TypeArgs

 | SimpleType ‘#’ id

 | StableId

 | Path ‘.’ ‘type’

 | Literal

 | ‘(’ Types ‘)’

TypeArgs ::= ‘[’ Types ‘]’

Types ::= Type {‘,’ Type}

3.1 Types

We distinguish between first-order types and type constructors, which take type parameters and yield

types. A subset of first-order types called represents sets of (first-class) values. Value types value types

are either or .concrete abstract

Every concrete value type can be represented as a , i.e. a that refers to a class type type designator class

 , or as a representing an intersection of types, possibly with a that or a trait compound type refinement

further constrains the types of its members.

Abstract value types are introduced by and . Parentheses in types type parameters abstract type bindings

can be used for grouping.

Non-value types capture properties of identifiers that . For example, a are not values type constructor

does not directly specify a type of values. However, when a type constructor is applied to the correct

type arguments, it yields a first-order type, which may be a value type.

Non-value types are expressed indirectly in Scala. E.g., a method type is described by writing down a

method signature, which in itself is not a real type, although it gives rise to a corresponding method

. Type constructors are another example, as one can write type type Swap[m[_, _], a,b] = m

, but there is no syntax to write the corresponding anonymous type function directly.[b, a]

Type ::= FunctionArgTypes ‘=>’ Type

 | InfixType [ExistentialClause]

FunctionArgTypes ::= InfixType

 | ‘(’ [ParamType {‘,’ ParamType }] ‘)’

ExistentialClause ::= ‘forSome’ ‘{’ ExistentialDcl

 {semi ExistentialDcl} ‘}’

ExistentialDcl ::= ‘type’ TypeDcl

 | ‘val’ ValDcl

InfixType ::= CompoundType {id [nl] CompoundType}

CompoundType ::= AnnotType {‘with’ AnnotType} [Refinement]

 | Refinement

AnnotType ::= SimpleType {Annotation}

SimpleType ::= SimpleType TypeArgs

 | SimpleType ‘#’ id

 | StableId

 | Path ‘.’ ‘type’

 | Literal

 | ‘(’ Types ‘)’

TypeArgs ::= ‘[’ Types ‘]’

Types ::= Type {‘,’ Type}

 We assume that objects and packages also implicitly define a class (of the same name as the object or

package, but inaccessible to user programs).

3.2 Paths

Paths are not types themselves, but they can be a part of named types and in that function form a

central role in Scala's type system.

A path is one of the following.

The empty path # (which cannot be written explicitly in user programs).

this , where references a class. The path is taken as a shorthand for where this this

 is the name of the class directly enclosing the reference.

 where is a path and is a stable member of . are packages or members Stable members

introduced by object definitions or by value definitions of .non-volatile types

super or where references a class and references a stable member of super

the super class or designated parent class of . The prefix is taken as a shorthand for super

 where is the name of the class directly enclosing the reference.super

A is a path which ends in an identifier.stable identifier

3.3 Value Types
Every value in Scala has a type which is of one of the following forms.

3.3.1 Singleton Types

A is of the form . Where is a path pointing to a value which to singleton type type conforms

, the type denotes the set of values consisting of and the value denoted by (i.scala.AnyRef null

e., the value for which). Where the path does not conform to the type v eq p scala.AnyRef

denotes the set consisting of only the value denoted by .

3.3.2 Literal Types

Path ::= StableId

 | [id ‘.’] this

StableId ::= id

 | Path ‘.’ id

 | [id ‘.’] ‘super’ [ClassQualifier] ‘.’ id

ClassQualifier ::= ‘[’ id ‘]’

SimpleType ::= Path ‘.’ ‘type’

SimpleType ::= Literal

 We assume that objects and packages also implicitly define a class (of the same name as the object or

package, but inaccessible to user programs).

3.2 Paths

Paths are not types themselves, but they can be a part of named types and in that function form a

central role in Scala's type system.

A path is one of the following.

The empty path # (which cannot be written explicitly in user programs).

this , where references a class. The path is taken as a shorthand for where this this

 is the name of the class directly enclosing the reference.

 where is a path and is a stable member of . are packages or members Stable members

introduced by object definitions or by value definitions of .non-volatile types

super or where references a class and references a stable member of super

the super class or designated parent class of . The prefix is taken as a shorthand for super

 where is the name of the class directly enclosing the reference.super

A is a path which ends in an identifier.stable identifier

3.3 Value Types
Every value in Scala has a type which is of one of the following forms.

3.3.1 Singleton Types

A is of the form . Where is a path pointing to a value which to singleton type type conforms

, the type denotes the set of values consisting of and the value denoted by (i.scala.AnyRef null

e., the value for which). Where the path does not conform to the type v eq p scala.AnyRef

denotes the set consisting of only the value denoted by .

3.3.2 Literal Types

Path ::= StableId

 | [id ‘.’] this

StableId ::= id

 | Path ‘.’ id

 | [id ‘.’] ‘super’ [ClassQualifier] ‘.’ id

ClassQualifier ::= ‘[’ id ‘]’

SimpleType ::= Path ‘.’ ‘type’

SimpleType ::= Literal

A literal type is a special kind of singleton type which denotes the single literal value . lit lit

Thus, the type ascription gives the most precise type to the literal value : the literal type .1: 1 1 1

At run time, an expression is considered to have literal type if . Concretely, the e lit e == lit

result of and is determined by e.isInstanceOf[lit] e match { case _ : lit => }

evaluating .e == lit

Literal types are available for all types for which there is dedicated syntax, except . This Unit

includes the numeric types (other than and which don't currently have syntax), Byte Short

, , and .Boolean Char String Symbol

3.3.3 Stable Types

A is a singleton type, a literal type, or a type that is declared to be a subtype of trait stable type

.scala.Singleton

3.3.4 Type Projection

A # references the type member named of type .type projection

3.3.5 Type Designators

A refers to a named value type. It can be simple or qualified. All such type designators type designator

are shorthands for type projections.

Specifically, the unqualified type name where is bound in some class, object, or package is taken

as a shorthand for . If is not bound in a class, object, or package, then is taken as a this.type#

shorthand for # ..type#

A qualified type designator has the form where is a and is a type name. Such a type p.t p path t

designator is equivalent to the type projection .p.type#t

Example

Some type designators and their expansions are listed below. We assume a local type parameter

, a value with a type member and the standard class ,maintable Node scala.Int

Designator Expansion

t #.type#t

Int scala.type#Int

scala.Int scala.type#Int

data.maintable.Node data.maintable.type#Node

SimpleType ::= SimpleType ‘#’ id

SimpleType ::= StableId

A literal type is a special kind of singleton type which denotes the single literal value . lit lit

Thus, the type ascription gives the most precise type to the literal value : the literal type .1: 1 1 1

At run time, an expression is considered to have literal type if . Concretely, the e lit e == lit

result of and is determined by e.isInstanceOf[lit] e match { case _ : lit => }

evaluating .e == lit

Literal types are available for all types for which there is dedicated syntax, except . This Unit

includes the numeric types (other than and which don't currently have syntax), Byte Short

, , and .Boolean Char String Symbol

3.3.3 Stable Types

A is a singleton type, a literal type, or a type that is declared to be a subtype of trait stable type

.scala.Singleton

3.3.4 Type Projection

A # references the type member named of type .type projection

3.3.5 Type Designators

A refers to a named value type. It can be simple or qualified. All such type designators type designator

are shorthands for type projections.

Specifically, the unqualified type name where is bound in some class, object, or package is taken

as a shorthand for . If is not bound in a class, object, or package, then is taken as a this.type#

shorthand for # ..type#

A qualified type designator has the form where is a and is a type name. Such a type p.t p path t

designator is equivalent to the type projection .p.type#t

Example

Some type designators and their expansions are listed below. We assume a local type parameter

, a value with a type member and the standard class ,maintable Node scala.Int

Designator Expansion

t #.type#t

Int scala.type#Int

scala.Int scala.type#Int

data.maintable.Node data.maintable.type#Node

SimpleType ::= SimpleType ‘#’ id

SimpleType ::= StableId

3.3.6 Parameterized Types

A consists of a type designator and type parameters parameterized type

where .

 must refer to a type constructor which takes type parameters .

Say the type parameters have lower bounds and upper bounds . The parameterized

type is well-formed if each actual type parameter , i.e. conforms to its bounds

where is the substitution .

Example

Given the partial type definitions:

the following parameterized types are well formed:

Example

Given the , the following types are ill-formed:above type definitions

SimpleType ::= SimpleType TypeArgs

TypeArgs ::= ‘[’ Types ‘]’

 TreeMap A Comparable A B … class [<: [],] { }

 List A … class [] { }

 I Comparable I … class extends [] { }

 F M _ X … class [[],] { }

 S K … class [<: String] { }

 G M Z I I … class [[<:],] { }

TreeMap I [, String]

List I[]

List List[[Boolean]]

F List [, Int]

G S [, String]

TreeMap I [] // illegal: wrong number of parameters

TreeMap List I [[], Int] // illegal: type parameter not within bound

F [Int, Boolean] // illegal: Int is not a type constructor

3.3.6 Parameterized Types

A consists of a type designator and type parameters parameterized type

where .

 must refer to a type constructor which takes type parameters .

Say the type parameters have lower bounds and upper bounds . The parameterized

type is well-formed if each actual type parameter , i.e. conforms to its bounds

where is the substitution .

Example

Given the partial type definitions:

the following parameterized types are well formed:

Example

Given the , the following types are ill-formed:above type definitions

SimpleType ::= SimpleType TypeArgs

TypeArgs ::= ‘[’ Types ‘]’

 TreeMap A Comparable A B … class [<: [],] { }

 List A … class [] { }

 I Comparable I … class extends [] { }

 F M _ X … class [[],] { }

 S K … class [<: String] { }

 G M Z I I … class [[<:],] { }

TreeMap I [, String]

List I[]

List List[[Boolean]]

F List [, Int]

G S [, String]

TreeMap I [] // illegal: wrong number of parameters

TreeMap List I [[], Int] // illegal: type parameter not within bound

F [Int, Boolean] // illegal: Int is not a type constructor

3.3.7 Tuple Types

A is an alias for the class , where .tuple type scala.Tuple [, … ,]

Tuple classes are case classes whose fields can be accessed using selectors , … , . Their _1 _n

functionality is abstracted in a corresponding trait. The -ary tuple class and product trait Product n

are defined at least as follows in the standard Scala library (they might also add other methods and

implement other traits).

3.3.8 Annotated Types

An attaches to the type .annotated type annotations

Example

The following type adds the annotation to the type :@suspendable String

3.3.9 Compound Types

F TreeMap [, Int] // illegal: TreeMap takes two parameters,

 // F expects a constructor taking one

G S [, Int] // illegal: S constrains its parameter to

 // conform to String,

 // G expects type constructor with a parameter

 // that conforms to Int

SimpleType ::= ‘(’ Types ‘)’

 Tuple … _1 … _n case class [+ , , +](: , , :)

 Product … extends [, ,]

 Product … trait [+ , , +] {

 productArity override def =

 _1 def :

 …

 _n def :

}

AnnotType ::= SimpleType {Annotation}

 String @suspendable

3.3.7 Tuple Types

A is an alias for the class , where .tuple type scala.Tuple [, … ,]

Tuple classes are case classes whose fields can be accessed using selectors , … , . Their _1 _n

functionality is abstracted in a corresponding trait. The -ary tuple class and product trait Product n

are defined at least as follows in the standard Scala library (they might also add other methods and

implement other traits).

3.3.8 Annotated Types

An attaches to the type .annotated type annotations

Example

The following type adds the annotation to the type :@suspendable String

3.3.9 Compound Types

F TreeMap [, Int] // illegal: TreeMap takes two parameters,

 // F expects a constructor taking one

G S [, Int] // illegal: S constrains its parameter to

 // conform to String,

 // G expects type constructor with a parameter

 // that conforms to Int

SimpleType ::= ‘(’ Types ‘)’

 Tuple … _1 … _n case class [+ , , +](: , , :)

 Product … extends [, ,]

 Product … trait [+ , , +] {

 productArity override def =

 _1 def :

 …

 _n def :

}

AnnotType ::= SimpleType {Annotation}

 String @suspendable

A … represents objects with members as given in the compound type with with

component types and the refinement . A refinement contains declarations and type

definitions. If a declaration or definition overrides a declaration or definition in one of the component

types , the usual rules for apply; otherwise the declaration or definition is said to overriding

be “structural” .

Within a method declaration in a structural refinement, the type of any value parameter may only refer

to type parameters or abstract types that are contained inside the refinement. That is, it must refer either

to a type parameter of the method itself, or to a type definition within the refinement. This restriction

does not apply to the method's result type.

If no refinement is given, the empty refinement is implicitly added, i.e. … is a with with

shorthand for … .with with

A compound type may also consist of just a refinement with no preceding component types. Such a

type is equivalent to .AnyRef

Example

The following example shows how to declare and use a method which has a parameter type

that contains a refinement with structural declarations.

CompoundType ::= AnnotType {‘with’ AnnotType} [Refinement]

 | Refinement

Refinement ::= [nl] ‘{’ RefineStat {semi RefineStat} ‘}’

RefineStat ::= Dcl

 | ‘type’ TypeDef

 |

 Bird name Object case class (val : String) extends {

 fly height …def (: Int) =

}

 Plane callsign Object case class (val : String) extends {

 fly height …def (: Int) =

}

 takeoffdef (

 runway : Int,

 r callsign fly height : { val : String; def (: Int) }

) = {

 tower print r callsign runway. (. + " requests take-off on runway " +)

 tower read r callsign . (. + " is clear for take-off")

 r fly. (1000)

}

 bird Bird callsign name val = new ("Polly the parrot"){ val = }

 a380 Planeval = new ("TZ-987")

takeoff bird(42,)

takeoff a380(89,)

A … represents objects with members as given in the compound type with with

component types and the refinement . A refinement contains declarations and type

definitions. If a declaration or definition overrides a declaration or definition in one of the component

types , the usual rules for apply; otherwise the declaration or definition is said to overriding

be “structural” .

Within a method declaration in a structural refinement, the type of any value parameter may only refer

to type parameters or abstract types that are contained inside the refinement. That is, it must refer either

to a type parameter of the method itself, or to a type definition within the refinement. This restriction

does not apply to the method's result type.

If no refinement is given, the empty refinement is implicitly added, i.e. … is a with with

shorthand for … .with with

A compound type may also consist of just a refinement with no preceding component types. Such a

type is equivalent to .AnyRef

Example

The following example shows how to declare and use a method which has a parameter type

that contains a refinement with structural declarations.

CompoundType ::= AnnotType {‘with’ AnnotType} [Refinement]

 | Refinement

Refinement ::= [nl] ‘{’ RefineStat {semi RefineStat} ‘}’

RefineStat ::= Dcl

 | ‘type’ TypeDef

 |

 Bird name Object case class (val : String) extends {

 fly height …def (: Int) =

}

 Plane callsign Object case class (val : String) extends {

 fly height …def (: Int) =

}

 takeoffdef (

 runway : Int,

 r callsign fly height : { val : String; def (: Int) }

) = {

 tower print r callsign runway. (. + " requests take-off on runway " +)

 tower read r callsign . (. + " is clear for take-off")

 r fly. (1000)

}

 bird Bird callsign name val = new ("Polly the parrot"){ val = }

 a380 Planeval = new ("TZ-987")

takeoff bird(42,)

takeoff a380(89,)

Although and do not share any parent class other than , the parameter Bird Plane Object r

of method is defined using a refinement with structural declarations to accept any takeoff

object that declares a value and a method.callsign fly

 A reference to a structurally defined member (method call or access to a value or variable) may

generate binary code that is significantly slower than an equivalent code to a non-structural member.

3.3.10 Infix Types

An consists of an infix operator which gets applied to two type operands infix type op op

and . The type is equivalent to the type application . The infix operator may be an op op

arbitrary identifier.

All type infix operators have the same precedence; parentheses have to be used for grouping. The

 of a type operator is determined as for term operators: type operators ending in a colon ‘:’ associativity

are right-associative; all other operators are left-associative.

In a sequence of consecutive type infix operations , all operators

must have the same associativity. If they are all left-associative, the sequence is interpreted as

, otherwise it is interpreted as .)

3.3.11 Function Types

The type represents the set of function values that take arguments of types

and yield results of type . In the case of exactly one argument type is a shorthand for .

An argument type of the form represents a of type .call-by-name parameter

Function types associate to the right, e.g. is the same as .

Function types are shorthands for class types that define functions. Specifically, the -ary apply

function type is a shorthand for the class type Function [, ... , ,]. Such class

types are defined in the Scala library for between 0 and 22 as follows.

InfixType ::= CompoundType {id [nl] CompoundType}

Type ::= FunctionArgs ‘=>’ Type

FunctionArgs ::= InfixType

 | ‘(’ [ParamType {‘,’ ParamType }] ‘)’

 scalapackage

 Function trait [, ... , ,] {

 apply def (: , ... , :):

 toString override def = "<function>"

}

Although and do not share any parent class other than , the parameter Bird Plane Object r

of method is defined using a refinement with structural declarations to accept any takeoff

object that declares a value and a method.callsign fly

 A reference to a structurally defined member (method call or access to a value or variable) may

generate binary code that is significantly slower than an equivalent code to a non-structural member.

3.3.10 Infix Types

An consists of an infix operator which gets applied to two type operands infix type op op

and . The type is equivalent to the type application . The infix operator may be an op op

arbitrary identifier.

All type infix operators have the same precedence; parentheses have to be used for grouping. The

 of a type operator is determined as for term operators: type operators ending in a colon ‘:’ associativity

are right-associative; all other operators are left-associative.

In a sequence of consecutive type infix operations , all operators

must have the same associativity. If they are all left-associative, the sequence is interpreted as

, otherwise it is interpreted as .)

3.3.11 Function Types

The type represents the set of function values that take arguments of types

and yield results of type . In the case of exactly one argument type is a shorthand for .

An argument type of the form represents a of type .call-by-name parameter

Function types associate to the right, e.g. is the same as .

Function types are shorthands for class types that define functions. Specifically, the -ary apply

function type is a shorthand for the class type Function [, ... , ,]. Such class

types are defined in the Scala library for between 0 and 22 as follows.

InfixType ::= CompoundType {id [nl] CompoundType}

Type ::= FunctionArgs ‘=>’ Type

FunctionArgs ::= InfixType

 | ‘(’ [ParamType {‘,’ ParamType }] ‘)’

 scalapackage

 Function trait [, ... , ,] {

 apply def (: , ... , :):

 toString override def = "<function>"

}

1.

2.

3.

4.

Hence, function types are in their result type and contravariant in their argument types.covariant

3.3.12 Existential Types

An has the form where is a sequence of .existential type forSome { } type declarations

Let be the types declared in (any of the type

parameter sections might be missing). The scope of each type includes the type and the []

existential clause . The type variables are said to be in the type . Type bound forSome { }

variables which occur in a type but which are not bound in are said to be in .free

A of is a type where is a substitution over such that, type instance forSome { }

for each , . The set of values denoted by the existential type is forSome { }

the union of the set of values of all its type instances.

A of is a type instance , where is the substitution skolemization forSome { }

 and each is a fresh abstract type with lower bound and upper bound .

Simplification Rules

Existential types obey the following four equivalences:

Multiple for-clauses in an existential type can be merged.

E.g., is equivalent to . forSome { } forSome { } forSome { ; }

Unused quantifications can be dropped.

E.g., where none of the types defined in are referred to by or , forSome { ; }

is equivalent to . forSome { }

An empty quantification can be dropped. E.g., is equivalent to . forSome { }

An existential type where contains a clause forSome { } type

 is equivalent to the type where results from by forSome { }

replacing every of in by and by replacing every contravariant covariant occurrence

occurrence of in by .

Existential Quantification over Values

As a syntactic convenience, the bindings clause in an existential type may also contain value

declarations . An existential type is treated as a val : forSome { ; val : ; }

shorthand for the type , where is a fresh forSome { ; type <: with Singleton; }

type name and results from by replacing every occurrence of with ..type

Placeholder Syntax for Existential Types

Type ::= InfixType ExistentialClauses

ExistentialClauses ::= ‘forSome’ ‘{’ ExistentialDcl

 {semi ExistentialDcl} ‘}’

ExistentialDcl ::= ‘type’ TypeDcl

 | ‘val’ ValDcl

WildcardType ::= ‘_’ TypeBounds

1.

2.

3.

4.

Hence, function types are in their result type and contravariant in their argument types.covariant

3.3.12 Existential Types

An has the form where is a sequence of .existential type forSome { } type declarations

Let be the types declared in (any of the type

parameter sections might be missing). The scope of each type includes the type and the []

existential clause . The type variables are said to be in the type . Type bound forSome { }

variables which occur in a type but which are not bound in are said to be in .free

A of is a type where is a substitution over such that, type instance forSome { }

for each , . The set of values denoted by the existential type is forSome { }

the union of the set of values of all its type instances.

A of is a type instance , where is the substitution skolemization forSome { }

 and each is a fresh abstract type with lower bound and upper bound .

Simplification Rules

Existential types obey the following four equivalences:

Multiple for-clauses in an existential type can be merged.

E.g., is equivalent to . forSome { } forSome { } forSome { ; }

Unused quantifications can be dropped.

E.g., where none of the types defined in are referred to by or , forSome { ; }

is equivalent to . forSome { }

An empty quantification can be dropped. E.g., is equivalent to . forSome { }

An existential type where contains a clause forSome { } type

 is equivalent to the type where results from by forSome { }

replacing every of in by and by replacing every contravariant covariant occurrence

occurrence of in by .

Existential Quantification over Values

As a syntactic convenience, the bindings clause in an existential type may also contain value

declarations . An existential type is treated as a val : forSome { ; val : ; }

shorthand for the type , where is a fresh forSome { ; type <: with Singleton; }

type name and results from by replacing every occurrence of with ..type

Placeholder Syntax for Existential Types

Type ::= InfixType ExistentialClauses

ExistentialClauses ::= ‘forSome’ ‘{’ ExistentialDcl

 {semi ExistentialDcl} ‘}’

ExistentialDcl ::= ‘type’ TypeDcl

 | ‘val’ ValDcl

WildcardType ::= ‘_’ TypeBounds

Scala supports a placeholder syntax for existential types. A is of the form . wildcard type _>: <:

Both bound clauses may be omitted. If a lower bound clause is missing, is >: >:scala.Nothing

assumed. If an upper bound clause is missing, is assumed.<: <:scala.Any

A wildcard type is a shorthand for an existentially quantified type variable, where the existential

quantification is implicit.

A wildcard type must appear as type argument of a parameterized type. Let be a

parameterized type where may be empty and is a wildcard type . Then is _>: <:

equivalent to the existential type

where is some fresh type variable. Wildcard types may also appear as parts of , infix types function

, or . Their expansion is then the expansion in the equivalent parameterized type.types tuple types

Example

Assume the class definitions

Here are some examples of existential types:

The last two types in this list are equivalent. An alternative formulation of the first type above

using wildcard syntax is:

Example

The type is equivalent to the existential typeList[List[_]]

Example

Assume a covariant type

 forSome { type >: <: }

 Ref Tclass []

 Outer T abstract class { type }

Ref T T java lang Number [] forSome { type <: . . }

Ref x T x Outer [.] forSome { val : }

Ref x_type # T x_type Outer Singleton [] forSome { type <: with }

Ref _ java lang Number[<: . .]

List List t t [[] forSome { type }]

Scala supports a placeholder syntax for existential types. A is of the form . wildcard type _>: <:

Both bound clauses may be omitted. If a lower bound clause is missing, is >: >:scala.Nothing

assumed. If an upper bound clause is missing, is assumed.<: <:scala.Any

A wildcard type is a shorthand for an existentially quantified type variable, where the existential

quantification is implicit.

A wildcard type must appear as type argument of a parameterized type. Let be a

parameterized type where may be empty and is a wildcard type . Then is _>: <:

equivalent to the existential type

where is some fresh type variable. Wildcard types may also appear as parts of , infix types function

, or . Their expansion is then the expansion in the equivalent parameterized type.types tuple types

Example

Assume the class definitions

Here are some examples of existential types:

The last two types in this list are equivalent. An alternative formulation of the first type above

using wildcard syntax is:

Example

The type is equivalent to the existential typeList[List[_]]

Example

Assume a covariant type

 forSome { type >: <: }

 Ref Tclass []

 Outer T abstract class { type }

Ref T T java lang Number [] forSome { type <: . . }

Ref x T x Outer [.] forSome { val : }

Ref x_type # T x_type Outer Singleton [] forSome { type <: with }

Ref _ java lang Number[<: . .]

List List t t [[] forSome { type }]

The type

is equivalent (by simplification rule 4 above) to

which is in turn equivalent (by simplification rules 2 and 3 above) to List[java.lang.

.Number]

3.4 Non-Value Types
The types explained in the following do not denote sets of values, nor do they appear explicitly in

programs. They are introduced in this report as the internal types of defined identifiers.

3.4.1 Method Types

A is denoted internally as , where is a sequence of parameter names and types method type

 for some and is a (value or method) type.

This type represents named methods that take arguments named of types and that

return a result of type .

Method types associate to the right: is treated as .

A special case are types of methods without any parameters. They are written here . => T

Parameterless methods name expressions that are re-evaluated each time the parameterless method

name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its type is implicitly

 to a corresponding function type.converted

Example

The declarations

produce the typings

 List Tclass [+]

List T T java lang Number [] forSome { type <: . . }

List java lang Number T java lang Number [. .] forSome { type <: . . }

 a def : Int

 b x def (: Int): Boolean

 c x y z def (: Int) (: String, : String): String

The type

is equivalent (by simplification rule 4 above) to

which is in turn equivalent (by simplification rules 2 and 3 above) to List[java.lang.

.Number]

3.4 Non-Value Types
The types explained in the following do not denote sets of values, nor do they appear explicitly in

programs. They are introduced in this report as the internal types of defined identifiers.

3.4.1 Method Types

A is denoted internally as , where is a sequence of parameter names and types method type

 for some and is a (value or method) type.

This type represents named methods that take arguments named of types and that

return a result of type .

Method types associate to the right: is treated as .

A special case are types of methods without any parameters. They are written here . => T

Parameterless methods name expressions that are re-evaluated each time the parameterless method

name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its type is implicitly

 to a corresponding function type.converted

Example

The declarations

produce the typings

 List Tclass [+]

List T T java lang Number [] forSome { type <: . . }

List java lang Number T java lang Number [. .] forSome { type <: . . }

 a def : Int

 b x def (: Int): Boolean

 c x y z def (: Int) (: String, : String): String

3.4.2 Polymorphic Method Types

A polymorphic method type is denoted internally as where is a type parameter section [] []

 for some and is a (value or method) type. This type [>: <: >: <:]

represents named methods that take type arguments which to the lower bounds conform

 and the upper bounds and that yield results of type .

Example

The declarations

produce the typings

3.4.3 Type Constructors

A is represented internally much like a polymorphic method type. type constructor [>: <:

 represents a type that is expected by a or an >: <:] type constructor parameter

 with the corresponding type parameter clause.abstract type constructor binding

Example

Consider this fragment of the class:Iterable[+X]

Conceptually, the type constructor is a name for the anonymous type Iterable [+X]

, which may be passed to the type constructor parameter in Iterable[X] newType

.flatMap

a : => Int

b : (Int) Boolean

c : (Int) (String, String) String

 empty A List Adef []: []

 union A Comparable A x Set A xs Set A Set Adef [<: []] (: [], : []): []

empty A List A: [>: Nothing <: Any] []

union A Comparable A x Set A xs Set A Set A: [>: Nothing <: []] (: [], : []) []

 Iterable X trait [+] {

 flatMap newType X Iterable X S f X newType S newType Sdef [[+] <: [],](: => []): []

}

3.4.2 Polymorphic Method Types

A polymorphic method type is denoted internally as where is a type parameter section [] []

 for some and is a (value or method) type. This type [>: <: >: <:]

represents named methods that take type arguments which to the lower bounds conform

 and the upper bounds and that yield results of type .

Example

The declarations

produce the typings

3.4.3 Type Constructors

A is represented internally much like a polymorphic method type. type constructor [>: <:

 represents a type that is expected by a or an >: <:] type constructor parameter

 with the corresponding type parameter clause.abstract type constructor binding

Example

Consider this fragment of the class:Iterable[+X]

Conceptually, the type constructor is a name for the anonymous type Iterable [+X]

, which may be passed to the type constructor parameter in Iterable[X] newType

.flatMap

a : => Int

b : (Int) Boolean

c : (Int) (String, String) String

 empty A List Adef []: []

 union A Comparable A x Set A xs Set A Set Adef [<: []] (: [], : []): []

empty A List A: [>: Nothing <: Any] []

union A Comparable A x Set A xs Set A Set A: [>: Nothing <: []] (: [], : []) []

 Iterable X trait [+] {

 flatMap newType X Iterable X S f X newType S newType Sdef [[+] <: [],](: => []): []

}

1.

2.

3.

1.

2.

3.5 Base Types and Member Definitions
Types of class members depend on the way the members are referenced. Central here are three notions,

namely:

the notion of the set of base types of a type

the notion of a type in some class seen from some prefix type

the notion of the set of member bindings of some type

These notions are defined mutually recursively as follows.

The set of of a type is a set of class types, given as follows.base types

The base types of a class type with parents are itself, as well as the base

types of the compound type . with … with { }

The base types of an aliased type are the base types of its alias.

The base types of an abstract type are the base types of its upper bound.

The base types of a parameterized type are the base types of type , where []

every occurrence of a type parameter of has been replaced by the corresponding

parameter type .

The base types of a singleton type are the base types of the type of ..type

The base types of a compound type are the with with { } reduced

 of the base classes of all 's. This means: Let the multi-set be the multi-set-union of union

the base types of all 's. If contains several type instances of the same class, say # [

 , then all those instances are replaced by one of them which conforms to all]

others. It is an error if no such instance exists. It follows that the reduced union, if it exists,

produces a set of class types, where different types are instances of different classes.

The base types of a type selection are determined as follows. If is an alias or #

abstract type, the previous clauses apply. Otherwise, must be a (possibly parameterized)

class type, which is defined in some class . Then the base types of are the base #

types of in seen from the prefix type .

The base types of an existential type are all types forSome { } forSome {

 where is a base type of . }

The notion of a type makes sense only if the prefix in class seen from some prefix type

type has a type instance of class as a base type, say . Then we define as # []

follows.

If , then in seen from is itself. = .type

Otherwise, if is an existential type , and in seen from is , forSome { }

then in seen from is . forSome { }

Otherwise, if is the 'th type parameter of some class , then

If has a base type , for some type parameters , then [] []

 in seen from is .

Otherwise, if is defined in a class , then in seen from is the same as in

seen from .

1.

2.

3.

1.

2.

3.5 Base Types and Member Definitions
Types of class members depend on the way the members are referenced. Central here are three notions,

namely:

the notion of the set of base types of a type

the notion of a type in some class seen from some prefix type

the notion of the set of member bindings of some type

These notions are defined mutually recursively as follows.

The set of of a type is a set of class types, given as follows.base types

The base types of a class type with parents are itself, as well as the base

types of the compound type . with … with { }

The base types of an aliased type are the base types of its alias.

The base types of an abstract type are the base types of its upper bound.

The base types of a parameterized type are the base types of type , where []

every occurrence of a type parameter of has been replaced by the corresponding

parameter type .

The base types of a singleton type are the base types of the type of ..type

The base types of a compound type are the with with { } reduced

 of the base classes of all 's. This means: Let the multi-set be the multi-set-union of union

the base types of all 's. If contains several type instances of the same class, say # [

 , then all those instances are replaced by one of them which conforms to all]

others. It is an error if no such instance exists. It follows that the reduced union, if it exists,

produces a set of class types, where different types are instances of different classes.

The base types of a type selection are determined as follows. If is an alias or #

abstract type, the previous clauses apply. Otherwise, must be a (possibly parameterized)

class type, which is defined in some class . Then the base types of are the base #

types of in seen from the prefix type .

The base types of an existential type are all types forSome { } forSome {

 where is a base type of . }

The notion of a type makes sense only if the prefix in class seen from some prefix type

type has a type instance of class as a base type, say . Then we define as # []

follows.

If , then in seen from is itself. = .type

Otherwise, if is an existential type , and in seen from is , forSome { }

then in seen from is . forSome { }

Otherwise, if is the 'th type parameter of some class , then

If has a base type , for some type parameters , then [] []

 in seen from is .

Otherwise, if is defined in a class , then in seen from is the same as in

seen from .

2.

3.

1.

2.

Otherwise, if is not defined in another class, then in seen from is itself.

Otherwise, if is the singleton type for some class then.this.type

If is a subclass of and has a type instance of class among its base types,

then in seen from is .

Otherwise, if is defined in a class , then in seen from is the same as in

seen from .

Otherwise, if is not defined in another class, then in seen from is itself.

If is some other type, then the described mapping is performed to all its type

components.

If is a possibly parameterized class type, where 's class is defined in some other class , and

 is some prefix type, then we use " seen from " as a shorthand for " in seen from ".

The of a type aremember bindings

all bindings such that there exists a type instance of some class among the base types

of and there exists a definition or declaration in such that results from by

replacing every type in by in seen from

all bindings of the type's , if it has onerefinement

The of a type projection is the member binding of the type in . In that case, we definition S#T T S

also say that .S#T is defined by

3.6 Relations between types
We define the following relations between types.

Name Symbolically Interpretation

Equivalence and are interchangeable in all contexts.

Conformance Type conforms to (" is a subtype of") type .

Weak Conformance Augments conformance for primitive numeric types.

Compatibility Type conforms to type after conversions.

3.6.1 Equivalence

Equivalence between types is the smallest congruence such that the following holds:

If is defined by a type alias , then is equivalent to .type =

If a path has a singleton type , then ..type .type .type

If is defined by an object definition, and is a path consisting only of package or object

selectors and ending in , then ..this.type .type

Two are equivalent if the sequences of their component are pairwise equivalent, compound types

and occur in the same order, and their refinements are equivalent. Two refinements are

2.

3.

1.

2.

Otherwise, if is not defined in another class, then in seen from is itself.

Otherwise, if is the singleton type for some class then.this.type

If is a subclass of and has a type instance of class among its base types,

then in seen from is .

Otherwise, if is defined in a class , then in seen from is the same as in

seen from .

Otherwise, if is not defined in another class, then in seen from is itself.

If is some other type, then the described mapping is performed to all its type

components.

If is a possibly parameterized class type, where 's class is defined in some other class , and

 is some prefix type, then we use " seen from " as a shorthand for " in seen from ".

The of a type aremember bindings

all bindings such that there exists a type instance of some class among the base types

of and there exists a definition or declaration in such that results from by

replacing every type in by in seen from

all bindings of the type's , if it has onerefinement

The of a type projection is the member binding of the type in . In that case, we definition S#T T S

also say that .S#T is defined by

3.6 Relations between types
We define the following relations between types.

Name Symbolically Interpretation

Equivalence and are interchangeable in all contexts.

Conformance Type conforms to (" is a subtype of") type .

Weak Conformance Augments conformance for primitive numeric types.

Compatibility Type conforms to type after conversions.

3.6.1 Equivalence

Equivalence between types is the smallest congruence such that the following holds:

If is defined by a type alias , then is equivalent to .type =

If a path has a singleton type , then ..type .type .type

If is defined by an object definition, and is a path consisting only of package or object

selectors and ending in , then ..this.type .type

Two are equivalent if the sequences of their component are pairwise equivalent, compound types

and occur in the same order, and their refinements are equivalent. Two refinements are

1.

2.

3.

equivalent if they bind the same names and the modifiers, types and bounds of every declared

entity are equivalent in both refinements.

Two are equivalent if:method types

neither are implicit, or they both are ;

they have equivalent result types;

they have the same number of parameters; and

corresponding parameters have equivalent types. Note that the names of parameters do not

matter for method type equivalence.

Two are equivalent if they have the same number of type parameters, polymorphic method types

and, after renaming one set of type parameters by another, the result types as well as lower and

upper bounds of corresponding type parameters are equivalent.

Two are equivalent if they have the same number of quantifiers, and, after existential types

renaming one list of type quantifiers by another, the quantified types as well as lower and upper

bounds of corresponding quantifiers are equivalent.

Two are equivalent if they have the same number of type parameters, and, after type constructors

renaming one list of type parameters by another, the result types as well as variances, lower and

upper bounds of corresponding type parameters are equivalent.

 A congruence is an equivalence relation which is closed under formation of contexts.

 A method type is implicit if the parameter section that defines it starts with the keyword.implicit

3.6.2 Conformance

The conformance relation is the smallest transitive relation that satisfies the following

conditions.

Conformance includes equivalence. If then .

For every value type , .scala.Nothing <: <: scala.Any

For every type constructor (with any number of type parameters), scala.Nothing <:

.<: scala.Any

For every class type such that one has . <: scala.AnyRef scala.Null <:

A type variable or abstract type conforms to its upper bound and its lower bound conforms to .

A class type or parameterized type conforms to any of its base-types.

A singleton type conforms to the type of the path ..type

A singleton type conforms to the type ..type scala.Singleton

A type projection conforms to if conforms to .# #

A parameterized type conforms to if the following [, … ,] [, … ,]

three conditions hold for :

If the 'th type parameter of is declared covariant, then .

If the 'th type parameter of is declared contravariant, then .

If the 'th type parameter of is declared neither covariant nor contravariant, then .

A compound type conforms to each of its component types . with with { }

If for and for every binding of a type or value in there exists a

member binding of in which subsumes , then conforms to the compound type with

. with { }

1.

2.

3.

equivalent if they bind the same names and the modifiers, types and bounds of every declared

entity are equivalent in both refinements.

Two are equivalent if:method types

neither are implicit, or they both are ;

they have equivalent result types;

they have the same number of parameters; and

corresponding parameters have equivalent types. Note that the names of parameters do not

matter for method type equivalence.

Two are equivalent if they have the same number of type parameters, polymorphic method types

and, after renaming one set of type parameters by another, the result types as well as lower and

upper bounds of corresponding type parameters are equivalent.

Two are equivalent if they have the same number of quantifiers, and, after existential types

renaming one list of type quantifiers by another, the quantified types as well as lower and upper

bounds of corresponding quantifiers are equivalent.

Two are equivalent if they have the same number of type parameters, and, after type constructors

renaming one list of type parameters by another, the result types as well as variances, lower and

upper bounds of corresponding type parameters are equivalent.

 A congruence is an equivalence relation which is closed under formation of contexts.

 A method type is implicit if the parameter section that defines it starts with the keyword.implicit

3.6.2 Conformance

The conformance relation is the smallest transitive relation that satisfies the following

conditions.

Conformance includes equivalence. If then .

For every value type , .scala.Nothing <: <: scala.Any

For every type constructor (with any number of type parameters), scala.Nothing <:

.<: scala.Any

For every class type such that one has . <: scala.AnyRef scala.Null <:

A type variable or abstract type conforms to its upper bound and its lower bound conforms to .

A class type or parameterized type conforms to any of its base-types.

A singleton type conforms to the type of the path ..type

A singleton type conforms to the type ..type scala.Singleton

A type projection conforms to if conforms to .# #

A parameterized type conforms to if the following [, … ,] [, … ,]

three conditions hold for :

If the 'th type parameter of is declared covariant, then .

If the 'th type parameter of is declared contravariant, then .

If the 'th type parameter of is declared neither covariant nor contravariant, then .

A compound type conforms to each of its component types . with with { }

If for and for every binding of a type or value in there exists a

member binding of in which subsumes , then conforms to the compound type with

. with { }

The existential type conforms to if its conforms to . forSome { } skolemization

The type conforms to the existential type if conforms to one of the forSome { } type

 of .instances forSome { }

If for and conforms to then the method type

conforms to .

The polymorphic type conforms to the

polymorphic type if, assuming

 one has and and for

.

Type constructors and follow a similar discipline. We characterize and by their type

parameter clauses and , where an or may include a variance annotation,

a higher-order type parameter clause, and bounds. Then, conforms to if any list --

with declared variances, bounds and higher-order type parameter clauses -- of valid type

arguments for is also a valid list of type arguments for and .

Note that this entails that:

The bounds on must be weaker than the corresponding bounds declared for .

The variance of must match the variance of , where covariance matches covariance,

contravariance matches contravariance and any variance matches invariance.

Recursively, these restrictions apply to the corresponding higher-order type parameter

clauses of and .

A declaration or definition in some compound type of class type another declaration of the subsumes

same name in some compound type or class type , if one of the following holds.

A value declaration or definition that defines a name with type subsumes a value or method

declaration that defines with type , provided .

A method declaration or definition that defines a name with type subsumes a method

declaration that defines with type , provided .

A type alias subsumes a type alias type [, … ,] = type [, … ,] =

 if .

A type declaration subsumes a type declaration type [, … ,] >: <: type

 if and .[, … ,] >: <:

A type or class definition that binds a type name subsumes an abstract type declaration type

 if .t[, … ,] >: L <: U

Least upper bounds and greatest lower bounds

The relation forms pre-order between types, i.e. it is transitive and reflexive. This allows us to

define and of a set of types in terms of that order. The least least upper bounds greatest lower bounds

upper bound or greatest lower bound of a set of types does not always exist. For instance, consider the

class definitions:

The existential type conforms to if its conforms to . forSome { } skolemization

The type conforms to the existential type if conforms to one of the forSome { } type

 of .instances forSome { }

If for and conforms to then the method type

conforms to .

The polymorphic type conforms to the

polymorphic type if, assuming

 one has and and for

.

Type constructors and follow a similar discipline. We characterize and by their type

parameter clauses and , where an or may include a variance annotation,

a higher-order type parameter clause, and bounds. Then, conforms to if any list --

with declared variances, bounds and higher-order type parameter clauses -- of valid type

arguments for is also a valid list of type arguments for and .

Note that this entails that:

The bounds on must be weaker than the corresponding bounds declared for .

The variance of must match the variance of , where covariance matches covariance,

contravariance matches contravariance and any variance matches invariance.

Recursively, these restrictions apply to the corresponding higher-order type parameter

clauses of and .

A declaration or definition in some compound type of class type another declaration of the subsumes

same name in some compound type or class type , if one of the following holds.

A value declaration or definition that defines a name with type subsumes a value or method

declaration that defines with type , provided .

A method declaration or definition that defines a name with type subsumes a method

declaration that defines with type , provided .

A type alias subsumes a type alias type [, … ,] = type [, … ,] =

 if .

A type declaration subsumes a type declaration type [, … ,] >: <: type

 if and .[, … ,] >: <:

A type or class definition that binds a type name subsumes an abstract type declaration type

 if .t[, … ,] >: L <: U

Least upper bounds and greatest lower bounds

The relation forms pre-order between types, i.e. it is transitive and reflexive. This allows us to

define and of a set of types in terms of that order. The least least upper bounds greatest lower bounds

upper bound or greatest lower bound of a set of types does not always exist. For instance, consider the

class definitions:

Then the types form a descending sequence of upper A[Any], A[A[Any]], A[A[A[Any]]], ...

bounds for and . The least upper bound would be the infinite limit of that sequence, which does B C

not exist as a Scala type. Since cases like this are in general impossible to detect, a Scala compiler is

free to reject a term which has a type specified as a least upper or greatest lower bound, and that bound

would be more complex than some compiler-set limit [^4].

The least upper bound or greatest lower bound might also not be unique. For instance and A with B

 are both greatest lower bounds of and . If there are several least upper bounds or B with A A B

greatest lower bounds, the Scala compiler is free to pick any one of them.

[^4]: The current Scala compiler limits the nesting level of parameterization in such bounds to be at

most two deeper than the maximum nesting level of the operand types

3.6.3 Weak Conformance

In some situations Scala uses a more general conformance relation. A type to a type weakly conforms

, written , if or both and are primitive number types and precedes in the

following ordering.

A is a least upper bound with respect to weak conformance.weak least upper bound

3.6.4 Compatibility

A type is to a type if (or its corresponding function type) to compatible weakly conforms

after applying . If is a method type, it's converted to the corresponding function type. If eta-expansion

the types do not weakly conform, the following alternatives are checked in order:

view application: there's an implicit view from to

dropping by-name modifiers: if is of the shape (and is not),

SAM conversion: if corresponds to a function type, and declares a single abstract method

whose type to the function type , corresponds

Example

Function compatibility via SAM conversion

 A T class [+] {}

 B A Bclass extends []

 C A Cclass extends []

 Byte Short

 Short Int

 Char Int

 Int Long

 Long Float

 Float Double

Then the types form a descending sequence of upper A[Any], A[A[Any]], A[A[A[Any]]], ...

bounds for and . The least upper bound would be the infinite limit of that sequence, which does B C

not exist as a Scala type. Since cases like this are in general impossible to detect, a Scala compiler is

free to reject a term which has a type specified as a least upper or greatest lower bound, and that bound

would be more complex than some compiler-set limit [^4].

The least upper bound or greatest lower bound might also not be unique. For instance and A with B

 are both greatest lower bounds of and . If there are several least upper bounds or B with A A B

greatest lower bounds, the Scala compiler is free to pick any one of them.

[^4]: The current Scala compiler limits the nesting level of parameterization in such bounds to be at

most two deeper than the maximum nesting level of the operand types

3.6.3 Weak Conformance

In some situations Scala uses a more general conformance relation. A type to a type weakly conforms

, written , if or both and are primitive number types and precedes in the

following ordering.

A is a least upper bound with respect to weak conformance.weak least upper bound

3.6.4 Compatibility

A type is to a type if (or its corresponding function type) to compatible weakly conforms

after applying . If is a method type, it's converted to the corresponding function type. If eta-expansion

the types do not weakly conform, the following alternatives are checked in order:

view application: there's an implicit view from to

dropping by-name modifiers: if is of the shape (and is not),

SAM conversion: if corresponds to a function type, and declares a single abstract method

whose type to the function type , corresponds

Example

Function compatibility via SAM conversion

 A T class [+] {}

 B A Bclass extends []

 C A Cclass extends []

 Byte Short

 Short Int

 Char Int

 Int Long

 Long Float

 Float Double

1.

2.

3.

Given the definitions

The application to the first overload, as it's more foo((x: Int) => x.toString) resolves

specific:

Int => String is compatible to -- when expecting a value of type ToString

, you may pass a function literal from to , as it will be SAM-ToString Int String

converted to said function;

ToString is not compatible to -- when expecting a function from Int => String

 to , you may not pass a .Int String ToString

3.7 Volatile Types
Type volatility approximates the possibility that a type parameter or abstract type instance of a type

does not have any non-null values. A value member of a volatile type cannot appear in a .path

A type is if it falls into one of four categories:volatile

A compound type is volatile if one of the following two conditions hold. with … with { }

One of is a type parameter or abstract type, or

 is an abstract type and and either the refinement or a type for contributes an

abstract member to the compound type, or

one of is a singleton type.

Here, a type to a type if contains an abstract member that is also contributes an abstract member

a member of . A refinement contributes an abstract member to a type if contains an abstract

declaration which is also a member of .

A type designator is volatile if it is an alias of a volatile type, or if it designates a type parameter or

abstract type that has a volatile type as its upper bound.

A singleton type is volatile, if the underlying type of path is volatile..type

An existential type is volatile if is volatile. forSome { }

3.8 Type Erasure
A type is called if it contains type arguments or type variables. is a mapping from generic Type erasure

(possibly generic) types to non-generic types. We write for the erasure of type . The erasure

mapping is defined as follows.

The erasure of an alias type is the erasure of its right-hand side.

 foo x def (: Int => String): Unit

 foo x ToString def (:): Unit

 ToString convert x trait { def (: Int): String }

1.

2.

3.

Given the definitions

The application to the first overload, as it's more foo((x: Int) => x.toString) resolves

specific:

Int => String is compatible to -- when expecting a value of type ToString

, you may pass a function literal from to , as it will be SAM-ToString Int String

converted to said function;

ToString is not compatible to -- when expecting a function from Int => String

 to , you may not pass a .Int String ToString

3.7 Volatile Types
Type volatility approximates the possibility that a type parameter or abstract type instance of a type

does not have any non-null values. A value member of a volatile type cannot appear in a .path

A type is if it falls into one of four categories:volatile

A compound type is volatile if one of the following two conditions hold. with … with { }

One of is a type parameter or abstract type, or

 is an abstract type and and either the refinement or a type for contributes an

abstract member to the compound type, or

one of is a singleton type.

Here, a type to a type if contains an abstract member that is also contributes an abstract member

a member of . A refinement contributes an abstract member to a type if contains an abstract

declaration which is also a member of .

A type designator is volatile if it is an alias of a volatile type, or if it designates a type parameter or

abstract type that has a volatile type as its upper bound.

A singleton type is volatile, if the underlying type of path is volatile..type

An existential type is volatile if is volatile. forSome { }

3.8 Type Erasure
A type is called if it contains type arguments or type variables. is a mapping from generic Type erasure

(possibly generic) types to non-generic types. We write for the erasure of type . The erasure

mapping is defined as follows.

The erasure of an alias type is the erasure of its right-hand side.

 foo x def (: Int => String): Unit

 foo x ToString def (:): Unit

 ToString convert x trait { def (: Int): String }

The erasure of an abstract type is the erasure of its upper bound.

The erasure of the parameterized type is .scala.Array scala.Array

The erasure of every other parameterized type is .

The erasure of a singleton type is the erasure of the type of ..type

The erasure of a type projection is .# | |#

The erasure of a compound type is the erasure of the intersection with with { }

dominator of .

The erasure of an existential type is . forSome { }

The of a list of types is computed as follows. Let be the intersection dominator

subsequence of types which are not supertypes of some other type . If this subsequence contains a

type designator that refers to a class which is not a trait, the intersection dominator is . Otherwise,

the intersection dominator is the first element of the subsequence, .

The erasure of an abstract type is the erasure of its upper bound.

The erasure of the parameterized type is .scala.Array scala.Array

The erasure of every other parameterized type is .

The erasure of a singleton type is the erasure of the type of ..type

The erasure of a type projection is .# | |#

The erasure of a compound type is the erasure of the intersection with with { }

dominator of .

The erasure of an existential type is . forSome { }

The of a list of types is computed as follows. Let be the intersection dominator

subsequence of types which are not supertypes of some other type . If this subsequence contains a

type designator that refers to a class which is not a trait, the intersection dominator is . Otherwise,

the intersection dominator is the first element of the subsequence, .

4.1 Basic Declarations and Definitions
TODO

4.1 Basic Declarations and Definitions
TODO

5.1 Classes and Objects
Classes and Objects

5.1 Classes and Objects
Classes and Objects

6.1 Expressions
TODO

6.1 Expressions
TODO

7.1 Implicits
TODO

7.1 Implicits
TODO

8.1 Pattern Matching
TODO

8.1 Pattern Matching
TODO

9.1 Top-Level Definitions
Top-Level Definitions

9.1 Top-Level Definitions
Top-Level Definitions

10.1 XML Expressions and Patterns
TODO

10.1 XML Expressions and Patterns
TODO

11.1 Annotations
TODO

11.1 Annotations
TODO

12.1 The Scala Standard Library
TODO

12.1 The Scala Standard Library
TODO

13.1 Syntax Summary
TODO

13.1 Syntax Summary
TODO

14.1 References
TODO

14.1 References
TODO

15.1 Changelog
TODO

15.1 Changelog
TODO

