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Preface
Scala is a Java-like programming language which unifies object-oriented and functional programming.

It is a pure object-oriented language in the sense that every value is an object. Types and behavior of 

objects are described by classes. Classes can be composed using mixin composition.

Scala is designed to work seamlessly with less pure but mainstream object-oriented languages like Java.

Scala is a functional language in the sense that every function is a value. Nesting of function 

definitions and higher-order functions are naturally supported. Scala also supports a general notion of 

pattern matching which can model the algebraic types used in many functional languages.

Scala has been designed to interoperate seamlessly with Java. Scala classes can call Java methods, 

create Java objects, inherit from Java classes and implement Java interfaces. None of this requires 

interface definitions or glue code.
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Scala has been developed from 2001 in the programming methods laboratory at EPFL. Version 1.0 was 

released in November 2003. This document describes the second version of the language, which was 

released in March 2006. It acts a reference for the language definition and some core library modules. 

It is not intended to teach Scala or its concepts; for this there are .other documents

Scala has been a collective effort of many people. The design and the implementation of version 1.0 

was completed by Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Stéphane 

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger, and the author. Iulian 

Dragos, Gilles Dubochet, Philipp Haller, Sean McDirmid, Lex Spoon, and Geoffrey Washburn joined 

in the effort to develop the second version of the language and tools. Gilad Bracha, Craig Chambers, 

Erik Ernst, Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer, 

Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have shaped the design of the 

language through lively and inspiring discussions and comments on previous versions of this 

document. The contributors to the Scala mailing list have also given very useful feedback that helped 

us improve the language and its tools.

Scala has been developed from 2001 in the programming methods laboratory at EPFL. Version 1.0 was 

released in November 2003. This document describes the second version of the language, which was 

released in March 2006. It acts a reference for the language definition and some core library modules. 

It is not intended to teach Scala or its concepts; for this there are .other documents

Scala has been a collective effort of many people. The design and the implementation of version 1.0 

was completed by Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Stéphane 

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger, and the author. Iulian 

Dragos, Gilles Dubochet, Philipp Haller, Sean McDirmid, Lex Spoon, and Geoffrey Washburn joined 

in the effort to develop the second version of the language and tools. Gilad Bracha, Craig Chambers, 

Erik Ernst, Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer, 

Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have shaped the design of the 

language through lively and inspiring discussions and comments on previous versions of this 

document. The contributors to the Scala mailing list have also given very useful feedback that helped 

us improve the language and its tools.



1.  

2.  

3.  

4.  

5.  

6.  

1.1 Lexical Syntax
Scala programs are written using the Unicode Basic Multilingual Plane ( ) character set; Unicode BMP

supplementary characters are not presently supported.

This chapter defines the two modes of Scala's lexical syntax, the Scala mode and the .XML mode

If not otherwise mentioned, the following descriptions of Scala tokens refer to , and literal Scala mode

characters (marked as ) refer to the ASCII fragment  – .c \u0000 \u007F

In Scala mode,  are replaced by the corresponding Unicode character with the given Unicode escapes

hexadecimal code.

To construct tokens, characters are distinguished according to the following classes (Unicode general 

category given in parentheses):

Whitespace characters. .\u0020 | \u0009 | \u000D | \u000A

Letters, which include lower case letters ( ), upper case letters ( ), titlecase letters ( ), Ll Lu Lt

other letters ( ), letter numerals ( ) and the two characters  and Lo Nl \u0024 "$" \u005F 

."_"

Digits ."0" | … | "9"

Parentheses ."(" | ")" | "[" | "]" | "{" | "}"

Delimiter characters ."`" | "'" | """ | "." | ";" | ","

Operator characters. These consist of all printable ASCII characters (  - ) that \u0020 \u007E

are in none of the sets above, mathematical symbols ( ) and other symbols ( ).Sm So

1.2 Identifiers

UnicodeEscape ::= ‘\’ ‘u’ {‘u’} hexDigit hexDigit hexDigit hexDigit

hexDigit      ::= ‘0’ | … | ‘9’ | ‘A’ | … | ‘F’ | ‘a’ | … | ‘f’

op          ::=  opchar {opchar}

varid       ::=  lower idrest

boundvarid  ::=  varid

              | ‘`’ varid ‘`’

plainid     ::=  upper idrest

              |  varid

              |  op

id          ::=  plainid

              |  ‘`’ { charNoBackQuoteOrNewline | UnicodeEscape | charEscapeSeq } ‘`’

idrest      ::=  {letter | digit} [‘_’ op]
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There are three ways to form an identifier.

First, an identifier can start with a letter which can be followed by an arbitrary sequence of letters and 

digits. This may be followed by underscore  characters and another string composed of either ‘_‘

letters and digits or of operator characters.

Second, an identifier can start with an operator character followed by an arbitrary sequence of operator 

characters. The preceding two forms are called .plain identifiers

Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may 

impose some restrictions on which strings are legal for identifiers). The identifier then is composed of 

all characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string  decomposes into big_bob++=`def`

the three identifiers , , and .big_bob ++= def

The rules for pattern matching further distinguish between , which start with a lower variable identifiers

case letter, and , which do not. For this purpose, underscore  is taken as lower constant identifiers ‘_‘

case, and the ‘$’ character is taken as upper case.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs should not define 

identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic class  of lexical id

identifiers.

The Unicode operators   and  , which have the ASCII equivalents  and \u21D2 \u2190 => <-

, are also reserved.

Example

Here are examples of identifiers:

                          abstract case catch class def

                              do else extends false final

                             finally for forSome if implicit

              macro              import lazy match new

                       null object override package private

                      protected return sealed super this

                               throw trait try true type

                                 val var while with yield

_                                 #    @: = => <- <: <% >:

x         Object        maxIndex   p2p      empty_?

         ` `       #####     _y       dot_product_+ yield *

__system  _MAX_LEN_

There are three ways to form an identifier.

First, an identifier can start with a letter which can be followed by an arbitrary sequence of letters and 

digits. This may be followed by underscore  characters and another string composed of either ‘_‘

letters and digits or of operator characters.

Second, an identifier can start with an operator character followed by an arbitrary sequence of operator 

characters. The preceding two forms are called .plain identifiers

Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may 

impose some restrictions on which strings are legal for identifiers). The identifier then is composed of 

all characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string  decomposes into big_bob++=`def`

the three identifiers , , and .big_bob ++= def

The rules for pattern matching further distinguish between , which start with a lower variable identifiers

case letter, and , which do not. For this purpose, underscore  is taken as lower constant identifiers ‘_‘

case, and the ‘$’ character is taken as upper case.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs should not define 

identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic class  of lexical id

identifiers.

The Unicode operators   and  , which have the ASCII equivalents  and \u21D2 \u2190 => <-

, are also reserved.

Example

Here are examples of identifiers:

                          abstract case catch class def

                              do else extends false final

                             finally for forSome if implicit

              macro              import lazy match new

                       null object override package private

                      protected return sealed super this

                               throw trait try true type

                                 val var while with yield

_                                 #    @: = => <- <: <% >:

x         Object        maxIndex   p2p      empty_?

         ` `       #####     _y       dot_product_+ yield *

__system  _MAX_LEN_



1.  

2.  

3.  

1.  

2.  

1.  

2.  

3.  

4.  

1.3 Newline Characters

Scala is a line-oriented language where statements may be terminated by semi-colons or newlines. A 

newline in a Scala source text is treated as the special token ‘nl’ if the three following criteria are 

satisfied:

The token immediately preceding the newline can terminate a statement.

The token immediately following the newline can begin a statement.

The token appears in a region where newlines are enabled.

The tokens that can terminate a statement are: literals, identifiers and the following delimiters and 

reserved words:

The tokens that can begin a statement are all Scala tokens  the following delimiters and reserved except

words:

A  token can begin a statement only if followed by a  or  token.case class object

Newlines are enabled in:

all of a Scala source file, except for nested regions where newlines are disabled

the interval between matching  and  brace tokens, except for nested regions where newlines { }

are disabled

Newlines are disabled in:

the interval between matching  and  parenthesis tokens, except for nested regions where ( )

newlines are enabled

the interval between matching  and  bracket tokens, except for nested regions where [ ]

newlines are enabled

the interval between a  token and its matching  token, except for nested regions where case =>

newlines are enabled

any regions analyzed in XML mode

Note that the brace characters of  escapes in XML and string literals are not tokens, and {...}

therefore do not enclose a region where newlines are enabled.

semi ::= ‘;’ |  nl {nl}

                        xml startthis null true false return type < - >

_                     ) ] }

                    catch else extends finally forSome match

                                        with yield , . ; : = => <- <: <%

    #                >: [ ) ] }
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Normally, only a single  token is inserted between two consecutive non-newline tokens which are nl

on different lines, even if there are multiple lines between the two tokens. However, if two tokens are 

separated by at least one completely blank line (i.e a line which contains no printable characters), then 

two  tokens are inserted.nl

The Scala grammar (given in full ) contains productions where optional  tokens, but not here nl

semicolons, are accepted. This has the effect that a newline in one of these positions does not terminate 

an expression or statement. These positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon in place of the 

newline would be illegal in every one of these cases):

between the condition of a  or  and the next following conditional expression while loop

expression

between the enumerators of a  and the next following expressionfor-comprehension

after the initial  keyword in a type type definition or declaration

A single new line token is accepted

in front of an opening brace ‘{’, if that brace is a legal continuation of the current statement or 

expression

after an , if the first token on the next line can start an expressioninfix operator

in front of a parameter clause

after an annotation

Example

The newline tokens between the two lines are not treated as statement separators.

Example

 x  if ( > 0)

  x  x  = - 1

 x  while ( > 0)

  x  x  = / 2

 x   to for ( <- 1 10)

  println x( )

type

  IntList  List= [Int]

 Iteratornew [Int]

{

    x  private var = 0
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With an additional newline character, the same code is interpreted as an object creation 

followed by a local block:

Example

With an additional newline character, the same code is interpreted as two expressions:

Example

With an additional newline character, the same code is interpreted as an abstract function 

definition and a syntactically illegal statement:

   hasNext  def = true

   next   x   x def = { += 1; }

}

 Iteratornew [Int]

{

    x  private var = 0

   hasNext  def = true

   next   x   x def = { += 1; }

}

x   < 0 ||

x  > 10

x   < 0 ||

x  > 10

 func x  def ( : Int)

        y    x  y( : Int) = +

 func x  def ( : Int)

        y    x  y( : Int) = +
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Example

With an additional newline character, the same code is interpreted as an attribute and a separate 

statement (which is syntactically illegal).

1.4 Literals
There are literals for integer numbers, floating point numbers, characters, booleans, symbols, strings. 

The syntax of these literals is in each case same as in Java.

1.4.1 Integer Literals

Integer literals are usually of type , or of type  when followed by a  or  suffix. Values Int Long L l

of type  are all integer numbers between  and , inclusive. Values of type  are all Int Long

integer numbers between  and , inclusive. A compile-time error occurs if an integer literal 

denotes a number outside these ranges.

However, if the expected type  of a literal in an expression is either , , or  and pt Byte Short Char

the integer number fits in the numeric range defined by the type, then the number is converted to type pt

and the literal's type is . The numeric ranges given by these types are:pt

@serializable

  Data   protected class { ... }

@serializable

  Data   protected class { ... }

Literal  ::=  [‘-’] integerLiteral

          |  [‘-’] floatingPointLiteral

          |  booleanLiteral

          |  characterLiteral

          |  stringLiteral

          |  interpolatedString

          |  symbolLiteral

          |  ‘null’

integerLiteral  ::=  (decimalNumeral | hexNumeral)

                      [‘L’ | ‘l’]

decimalNumeral  ::=  ‘0’ | nonZeroDigit {digit}

hexNumeral      ::=  ‘0’ (‘x’ | ‘X’) hexDigit {hexDigit}

digit           ::=  ‘0’ | nonZeroDigit

nonZeroDigit    ::=  ‘1’ | … | ‘9’

Example
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Byte to 

Short  to 

Char  to 

Example

1.4.2 Floating Point Literals

Floating point literals are of type  when followed by a floating point type suffix  or , and Float F f

are of type  otherwise. The type  consists of all IEEE 754 32-bit single-precision Double Float

binary floating point values, whereas the type  consists of all IEEE 754 64-bit double-Double

precision binary floating point values.

If a floating point literal in a program is followed by a token starting with a letter, there must be at least 

one intervening whitespace character between the two tokens.

Example

Example

The phrase  parses as three different tokens: the integer literal , a , and the 1.toString 1 .

identifier .toString

Example

1.  is not a valid floating point literal because the mandatory digit after the  is missing..

1.4.3 Boolean Literals

                           0 21 0xFFFFFFFF -42L

floatingPointLiteral  ::=  digit {digit} ‘.’ digit {digit} [exponentPart] [floatType]

                        |  ‘.’ digit {digit} [exponentPart] [floatType]

                        |  digit {digit} exponentPart [floatType]

                        |  digit {digit} [exponentPart] floatType

exponentPart          ::=  (‘E’ | ‘e’) [‘+’ | ‘-’] digit {digit}

floatType             ::=  ‘F’ | ‘f’ | ‘D’ | ‘d’

                    e       0.0 1e30f 3.14159f 1.0 -100 .1
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The boolean literals  and  are members of type .true false Boolean

1.4.4 Character Literals

A character literal is a single character enclosed in quotes. The character can be any Unicode character 

except the single quote delimiter or  (LF) or  (CR); or any Unicode character \u000A \u000D

represented by either a  or by an .Unicode escape escape sequence

Example

Note that although Unicode conversion is done early during parsing, so that Unicode characters are 

generally equivalent to their escaped expansion in the source text, literal parsing accepts arbitrary 

Unicode escapes, including the character literal , which can also be written using the '\u000A'

escape sequence .'\n'

1.4.5 String Literals

A string literal is a sequence of characters in double quotes. The characters can be any Unicode 

character except the double quote delimiter or  (LF) or  (CR); or any Unicode \u000A \u000D

character represented by either a  or by an .Unicode escape escape sequence

If the string literal contains a double quote character, it must be escaped using ."\""

The value of a string literal is an instance of class .String

Example

Multi-Line String Literals

booleanLiteral  ::=  ‘true’ | ‘false’

characterLiteral  ::=  ‘'’ (charNoQuoteOrNewline | UnicodeEscape | charEscapeSeq) ‘'’

            'a' '\u0041' '\n' '\t'

stringLiteral  ::=  ‘"’ {stringElement} ‘"’

stringElement  ::=  charNoDoubleQuoteOrNewline | UnicodeEscape | charEscapeSeq

"Hello, world!\n"

"\"Hello,\" replied the world."

The boolean literals  and  are members of type .true false Boolean
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character except the double quote delimiter or  (LF) or  (CR); or any Unicode \u000A \u000D

character represented by either a  or by an .Unicode escape escape sequence

If the string literal contains a double quote character, it must be escaped using ."\""

The value of a string literal is an instance of class .String

Example

Multi-Line String Literals

booleanLiteral  ::=  ‘true’ | ‘false’

characterLiteral  ::=  ‘'’ (charNoQuoteOrNewline | UnicodeEscape | charEscapeSeq) ‘'’

            'a' '\u0041' '\n' '\t'

stringLiteral  ::=  ‘"’ {stringElement} ‘"’

stringElement  ::=  charNoDoubleQuoteOrNewline | UnicodeEscape | charEscapeSeq

"Hello, world!\n"

"\"Hello,\" replied the world."



A multi-line string literal is a sequence of characters enclosed in triple quotes . The """ ... """

sequence of characters is arbitrary, except that it may contain three or more consecutive quote 

characters only at the very end. Characters must not necessarily be printable; newlines or other control 

characters are also permitted. Unicode escapes work as everywhere else, but none of the escape 

sequences  are interpreted.here

Example

This would produce the string:

The Scala library contains a utility method  which can be used to strip leading stripMargin

whitespace from multi-line strings.

The expression

evaluates to

Method  is defined in class . Because stripMargin scala.collection.immutable.StringLike

there is a predefined  from  to , the method is implicit conversion String StringLike

applicable to all strings.

Interpolated string

stringLiteral   ::=  ‘"""’ multiLineChars ‘"""’

multiLineChars  ::=  {[‘"’] [‘"’] charNoDoubleQuote} {‘"’}

"""the present string

   spans three

   lines."""

the present string

     spans three

     lines.

"""the present string

  |spans three

stripMargin  |lines.""".

the present string

spans three

lines.
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https://www.scala-lang.org/api/current/scala/collection/immutable/StringLike.html


Interpolated string consists of an identifier starting with a letter immediately followed by a string 

literal. There may be no whitespace characters or comments between the leading identifier and the 

opening quote ‘"’ of the string. The string literal in a interpolated string can be standard (single quote) 

or multi-line (triple quote).

Inside an interpolated string none of the usual escape characters are interpreted (except for unicode 

escapes) no matter whether the string literal is normal (enclosed in single quotes) or multi-line 

(enclosed in triple quotes). Instead, there are two new forms of dollar sign escape. The most general 

form encloses an expression in ‘${’ and ‘}’, i.e. . The expression enclosed in the braces that ${expr}

follow the leading ‘$’ character is of syntactical category . Hence, it can contain multiple BlockExpr

statements, and newlines are significant. Single ‘$’-signs are not permitted in isolation in a interpolated 

string. A single ‘$’-sign can still be obtained by doubling the ‘$’ character: ‘$$’.

The simpler form consists of a ‘$’-sign followed by an identifier starting with a letter and followed 

only by letters, digits, and underscore characters, e.g . The simpler form is expanded by putting $id

braces around the identifier, e.g  is equivalent to . In the following, unless we explicitly $id ${id}

state otherwise, we assume that this expansion has already been performed.

The expanded expression is type checked normally. Usually,  will resolve to the StringContext

default implementation in the scala package, but it could also be user-defined. Note that new 

interpolators can also be added through implicit conversion of the built-in .scala.StringContext

One could write an extension

1.4.6 Escape Sequences

The following escape sequences are recognized in character and string literals.

charEscapeSeq unicode name char

‘\‘ ‘b‘ \u0008 backspace BS

‘\‘ ‘t‘ \u0009 horizontal tab HT

‘\‘ ‘n‘ \u000a linefeed LF

interpolatedString  ::= alphaid ‘"’ {printableChar (‘"’ | ‘$’) | escape} ‘"’

                      |  alphaid ‘"""’ {[‘"’] [‘"’] char (‘"’ | ‘$’) | escape} {‘"’} ‘"""’

escape              ::= ‘$$’

                      | ‘$’ id

                      | ‘$’ BlockExpr

alphaid             ::= upper idrest

                      |  varid

  StringInterpolation s  StringContext  implicit class ( : ) {

   id args    def ( : Any*) = ???

}
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‘\‘ ‘f‘ \u000c form feed FF

‘\‘ ‘r‘ \u000d carriage return CR

‘\‘ ‘"‘ \u0022 double quote "

‘\‘ ‘'‘ \u0027 single quote '

‘\‘ ‘\‘ \u005c backslash \

It is a compile time error if a backslash character in a character or string literal does not start a valid 

escape sequence.

1.4.7 Symbol literals

A symbol literal  is a shorthand for the expression  and is of the  'x scala.Symbol("x") literal type

.  is a , which is defined as follows.'x Symbol case class

The  method of 's companion object caches weak references to s, thus apply Symbol Symbol

ensuring that identical symbol literals are equivalent with respect to reference equality.

1.5 Whitespace and Comments
Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:

A single-line comment is a sequence of characters which starts with  and extends to the end of the //

line.

A multi-line comment is a sequence of characters between  and . Multi-line comments may be /* */

nested, but are required to be properly nested. Therefore, a comment like  will be rejected /* /* */

as having an unterminated comment.

1.6 Trailing Commas in Multi-line Expressions
If a comma ( ) is followed immediately, ignoring whitespace, by a newline and a closing parenthesis (,

), bracket ( ), or brace ( ), then the comma is treated as a "trailing comma" and is ignored. For ) ] }

example:

symbolLiteral  ::=  ‘'’ plainid

 scalapackage

   Symbol  name   final case class private ( : String) {

    toString      nameoverride def : String = "'" +

}
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1.7 XML mode
In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to 

XML mode when encountering an opening angle bracket ‘<’ in the following circumstance: The ‘<’ 

must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately 

followed by a character starting an XML name.

The scanner switches from XML mode to Scala mode if either of these is true:

the XML expression or the XML pattern started by the initial ‘<’ has been successfully parsed

the parser encounters an embedded Scala expression or pattern and forces the Scanner back to 

normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code 

and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of 

XML and Scala expressions adequately

Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.

Example

The following value definition uses an XML literal with two embedded Scala expressions:

foo(

  23,

  "bar",

  true,

)

( whitespace | ‘(’ | ‘{’ ) ‘<’ (XNameStart | ‘!’ | ‘?’)

  XNameStart ::= ‘_’ | BaseChar | Ideographic // as in W3C XML, but without ‘:’

 b  val = book< >

          The Scala Language Specification titletitle< > </ >

          scalaBook version versionversion< >{ . }</ >

          scalaBook authors mkList   authorsauthors< >{ . . ("", ", ", "")}</ >

        book</ >
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1.  

2.  

3.  

4.  

2.1 Identifiers, Names and Scopes
Names in Scala identify types, values, methods, and classes which are collectively called . entities

Names are introduced by local , , , or definitions and declarations inheritance import clauses package 

 which are collectively called .clauses bindings

Bindings of different kinds have a precedence defined on them:

Definitions and declarations that are local, inherited, or made available by a package clause and 

also defined in the same compilation unit as the reference to them, have highest precedence.

Explicit imports have next highest precedence.

Wildcard imports have next highest precedence.

Definitions made available by a package clause, but not also defined in the same compilation 

unit as the reference to them, as well as imports which are supplied by the compiler but not 

explicitly written in source code, have lowest precedence.

There are two different name spaces, one for  and one for . The same name may designate a types terms

type and a term, depending on the context where the name is used.

A binding has a  in which the entity defined by a single name can be accessed using a simple scope

name.

Scopes are nested. A binding in some inner scope  bindings of lower precedence in the same shadows

scope as well as bindings of the same or lower precedence in outer scopes.

Note that shadowing is only a partial order. In the following example, neither binding of  shadows x

the other. Consequently, the reference to  in the last line of the block is ambiguous.x

A reference to an unqualified (type- or term-) identifier  is bound by the unique binding, which

defines an entity with name  in the same namespace as the identifier

shadows all other bindings that define entities with name  in that namespace.

It is an error if no such binding exists. If  is bound by an import clause, then the simple name  is 

taken to be equivalent to the qualified name to which  is mapped by the import clause. If  is bound 

by a definition or declaration, then  refers to the entity introduced by that binding. In that case, the 

type of  is the type of the referenced entity.

 x  val = 1

locally {

   p X ximport . .

  x

}
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}



A reference to a qualified (type- or term-) identifier  refers to the member of the type  of  which 

has the name  in the same namespace as the identifier. It is an error if  is not a . The type value type

of  is the member type of the referenced entity in .

Binding precedence implies that the way source is bundled in files affects name resolution. In 

particular, imported names have higher precedence than names, defined in other files, that might 

otherwise be visible because they are defined in either the current package or an enclosing package.

Note that a package definition is taken as lowest precedence, since packages are open and can be 

defined across arbitrary compilation units.

The compiler supplies imports in a preamble to every source file. This preamble conceptually has the 

following form, where braces indicate nested scopes:

These imports are taken as lowest precedence, so that they are always shadowed by user code, which 

may contain competing imports and definitions. They also increase the nesting depth as shown, so that 

later imports shadow earlier ones.

As a convenience, multiple bindings of a type identifier to the same underlying type is permitted. This 

is possible when import clauses introduce a binding of a member type alias with the same binding 

precedence, typically through wildcard imports. This allows redundant type aliases to be imported 

without introducing an ambiguity.

 util package {

   scala utilimport .

   Randomclass

   Test  App object extends {

    println  util Random   (new . ) // scala.util.Random

  }

}

 java lang _import . .

{

   scala _import .

  {

     Predef _import .

      { /* source */ }

  }

}

 X   T  annotation tailrec object { type = . }

 Y   T  annotation tailrec object { type = . }

 Z object {

   X _  Y _  annotation tailrec  T   import . , . , .{ => } // OK, all T mean tailrec

    f     f                     @T def : Int = { ; 42 } // error, f is not tail recursive

}

A reference to a qualified (type- or term-) identifier  refers to the member of the type  of  which 

has the name  in the same namespace as the identifier. It is an error if  is not a . The type value type
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Note that a package definition is taken as lowest precedence, since packages are open and can be 
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As a convenience, multiple bindings of a type identifier to the same underlying type is permitted. This 

is possible when import clauses introduce a binding of a member type alias with the same binding 
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  }

}
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  {

     Predef _import .

      { /* source */ }

  }

}

 X   T  annotation tailrec object { type = . }

 Y   T  annotation tailrec object { type = . }
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   X _  Y _  annotation tailrec  T   import . , . , .{ => } // OK, all T mean tailrec

    f     f                     @T def : Int = { ; 42 } // error, f is not tail recursive

}



Similarly, imported aliases of names introduced by package statements are allowed, even though the 

names are strictly ambiguous:

The reference to  in the definition of  is strictly ambiguous because  is available by virtue of the C X C

package clause in a different file, and can't shadow the imported name. But because the references are 

the same, the definition is taken as though it did shadow the import.

2.1.1 Example

Assume the following two definitions of objects named  in packages  and  in separate X p q

compilation units.

The following program illustrates different kinds of bindings and precedences between them.

// c.scala

 p   C package { class }

// xy.scala

 p _import .

 p   X  C package { class extends }

 q   Y  C package { class extends }

 p package {

   X   x    y   object { val = 1; val = 2 }

}

 q package {

   X   x    y   object { val = true; val = false }

}

 p                    package { // `X' bound by package clause

 Console _              import . // `println' bound by wildcard import

 Y object {

  println s           ( "L4: $X") // `X' refers to `p.X' here

  locally {

     q _                import . // `X' bound by wildcard import

    println s         ( "L7: $X") // `X' refers to `q.X' here

     X _                import . // `x' and `y' bound by wildcard import

    println s         ( "L9: $x") // `x' refers to `q.X.x' here

    locally {

       x                 val = 3 // `x' bound by local definition

      println s      ( "L12: $x") // `x' refers to constant `3' here

      locally {

         q X _          import . . // `x' and `y' bound by wildcard import

Similarly, imported aliases of names introduced by package statements are allowed, even though the 

names are strictly ambiguous:

The reference to  in the definition of  is strictly ambiguous because  is available by virtue of the C X C

package clause in a different file, and can't shadow the imported name. But because the references are 

the same, the definition is taken as though it did shadow the import.

2.1.1 Example

Assume the following two definitions of objects named  in packages  and  in separate X p q

compilation units.

The following program illustrates different kinds of bindings and precedences between them.

// c.scala

 p   C package { class }

// xy.scala

 p _import .

 p   X  C package { class extends }

 q   Y  C package { class extends }

 p package {

   X   x    y   object { val = 1; val = 2 }

}

 q package {

   X   x    y   object { val = true; val = false }

}

 p                    package { // `X' bound by package clause

 Console _              import . // `println' bound by wildcard import

 Y object {

  println s           ( "L4: $X") // `X' refers to `p.X' here

  locally {

     q _                import . // `X' bound by wildcard import

    println s         ( "L7: $X") // `X' refers to `q.X' here

     X _                import . // `x' and `y' bound by wildcard import

    println s         ( "L9: $x") // `x' refers to `q.X.x' here

    locally {

       x                 val = 3 // `x' bound by local definition

      println s      ( "L12: $x") // `x' refers to constant `3' here

      locally {

         q X _          import . . // `x' and `y' bound by wildcard import



//      println(s"L15: $x")   // reference to `x' is ambiguous here

         X y            import . // `y' bound by explicit import

        println s    ( "L17: $y") // `y' refers to `q.X.y' here

        locally {

           x         val = "abc" // `x' bound by local definition

           p X _        import . . // `x' and `y' bound by wildcard import

//        println(s"L21: $y") // reference to `y' is ambiguous here

          println s  ( "L22: $x") // `x' refers to string "abc" here

}}}}}}

//      println(s"L15: $x")   // reference to `x' is ambiguous here

         X y            import . // `y' bound by explicit import

        println s    ( "L17: $y") // `y' refers to `q.X.y' here

        locally {

           x         val = "abc" // `x' bound by local definition

           p X _        import . . // `x' and `y' bound by wildcard import

//        println(s"L21: $y") // reference to `y' is ambiguous here

          println s  ( "L22: $x") // `x' refers to string "abc" here

}}}}}}



3.1 Types

We distinguish between first-order types and type constructors, which take type parameters and yield 

types. A subset of first-order types called  represents sets of (first-class) values. Value types value types

are either  or .concrete abstract

Every concrete value type can be represented as a , i.e. a  that refers to a class type type designator class 

 , or as a  representing an intersection of types, possibly with a  that or a trait compound type refinement

further constrains the types of its members.

Abstract value types are introduced by  and . Parentheses in types type parameters abstract type bindings

can be used for grouping.

Non-value types capture properties of identifiers that . For example, a  are not values type constructor

does not directly specify a type of values. However, when a type constructor is applied to the correct 

type arguments, it yields a first-order type, which may be a value type.

Non-value types are expressed indirectly in Scala. E.g., a method type is described by writing down a 

method signature, which in itself is not a real type, although it gives rise to a corresponding method 

. Type constructors are another example, as one can write type type Swap[m[_, _], a,b] = m

, but there is no syntax to write the corresponding anonymous type function directly.[b, a]

Type              ::=  FunctionArgTypes ‘=>’ Type

                    |  InfixType [ExistentialClause]

FunctionArgTypes  ::=  InfixType

                    |  ‘(’ [ ParamType {‘,’ ParamType } ] ‘)’

ExistentialClause ::=  ‘forSome’ ‘{’ ExistentialDcl

                          {semi ExistentialDcl} ‘}’

ExistentialDcl    ::=  ‘type’ TypeDcl

                    |  ‘val’ ValDcl

InfixType         ::=  CompoundType {id [nl] CompoundType}

CompoundType      ::=  AnnotType {‘with’ AnnotType} [Refinement]

                    |  Refinement

AnnotType         ::=  SimpleType {Annotation}

SimpleType        ::=  SimpleType TypeArgs

                    |  SimpleType ‘#’ id

                    |  StableId

                    |  Path ‘.’ ‘type’

                    |  Literal

                    |  ‘(’ Types ‘)’

TypeArgs          ::=  ‘[’ Types ‘]’

Types             ::=  Type {‘,’ Type}
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                    |  InfixType [ExistentialClause]

FunctionArgTypes  ::=  InfixType

                    |  ‘(’ [ ParamType {‘,’ ParamType } ] ‘)’

ExistentialClause ::=  ‘forSome’ ‘{’ ExistentialDcl

                          {semi ExistentialDcl} ‘}’

ExistentialDcl    ::=  ‘type’ TypeDcl

                    |  ‘val’ ValDcl

InfixType         ::=  CompoundType {id [nl] CompoundType}

CompoundType      ::=  AnnotType {‘with’ AnnotType} [Refinement]

                    |  Refinement

AnnotType         ::=  SimpleType {Annotation}

SimpleType        ::=  SimpleType TypeArgs

                    |  SimpleType ‘#’ id

                    |  StableId

                    |  Path ‘.’ ‘type’

                    |  Literal

                    |  ‘(’ Types ‘)’

TypeArgs          ::=  ‘[’ Types ‘]’

Types             ::=  Type {‘,’ Type}



 We assume that objects and packages also implicitly define a class (of the same name as the object or 

package, but inaccessible to user programs).

3.2 Paths

Paths are not types themselves, but they can be a part of named types and in that function form a 

central role in Scala's type system.

A path is one of the following.

The empty path # (which cannot be written explicitly in user programs).

this , where  references a class. The path  is taken as a shorthand for  where this this

 is the name of the class directly enclosing the reference.

 where  is a path and  is a stable member of .  are packages or members Stable members

introduced by object definitions or by value definitions of .non-volatile types

super  or  where  references a class and  references a stable member of super

the super class or designated parent class  of . The prefix  is taken as a shorthand for super

 where  is the name of the class directly enclosing the reference.super

A  is a path which ends in an identifier.stable identifier

3.3 Value Types
Every value in Scala has a type which is of one of the following forms.

3.3.1 Singleton Types

A  is of the form . Where  is a path pointing to a value which  to singleton type type conforms

, the type denotes the set of values consisting of  and the value denoted by  (i.scala.AnyRef null

e., the value  for which ). Where the path does not conform to  the type v eq p scala.AnyRef

denotes the set consisting of only the value denoted by .

3.3.2 Literal Types

Path            ::=  StableId

                  |  [id ‘.’] this

StableId        ::=  id

                  |  Path ‘.’ id

                  |  [id ‘.’] ‘super’ [ClassQualifier] ‘.’ id

ClassQualifier  ::= ‘[’ id ‘]’

SimpleType  ::=  Path ‘.’ ‘type’

SimpleType  ::=  Literal
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package, but inaccessible to user programs).

3.2 Paths

Paths are not types themselves, but they can be a part of named types and in that function form a 

central role in Scala's type system.

A path is one of the following.
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A  is a path which ends in an identifier.stable identifier

3.3 Value Types
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, the type denotes the set of values consisting of  and the value denoted by  (i.scala.AnyRef null

e., the value  for which ). Where the path does not conform to  the type v eq p scala.AnyRef

denotes the set consisting of only the value denoted by .
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Path            ::=  StableId

                  |  [id ‘.’] this
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A literal type  is a special kind of singleton type which denotes the single literal value . lit lit

Thus, the type ascription  gives the most precise type to the literal value : the literal type .1: 1 1 1

At run time, an expression  is considered to have literal type  if . Concretely, the e lit e == lit

result of  and  is determined by e.isInstanceOf[lit] e match { case _ : lit => }

evaluating .e == lit

Literal types are available for all types for which there is dedicated syntax, except . This Unit

includes the numeric types (other than  and  which don't currently have syntax), Byte Short

, ,  and .Boolean Char String Symbol

3.3.3 Stable Types

A  is a singleton type, a literal type, or a type that is declared to be a subtype of trait stable type

.scala.Singleton

3.3.4 Type Projection

A  #  references the type member named  of type .type projection

3.3.5 Type Designators

A  refers to a named value type. It can be simple or qualified. All such type designators type designator

are shorthands for type projections.

Specifically, the unqualified type name  where  is bound in some class, object, or package  is taken 

as a shorthand for . If  is not bound in a class, object, or package, then  is taken as a this.type#

shorthand for # ..type#

A qualified type designator has the form  where  is a  and  is a type name. Such a type p.t p path t

designator is equivalent to the type projection .p.type#t

Example

Some type designators and their expansions are listed below. We assume a local type parameter 

, a value  with a type member  and the standard class ,maintable Node scala.Int

Designator Expansion

t #.type#t

Int scala.type#Int

scala.Int scala.type#Int

data.maintable.Node data.maintable.type#Node

SimpleType  ::=  SimpleType ‘#’ id

SimpleType  ::=  StableId
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3.3.5 Type Designators
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as a shorthand for . If  is not bound in a class, object, or package, then  is taken as a this.type#

shorthand for # ..type#

A qualified type designator has the form  where  is a  and  is a type name. Such a type p.t p path t

designator is equivalent to the type projection .p.type#t
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SimpleType  ::=  SimpleType ‘#’ id
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3.3.6 Parameterized Types

A   consists of a type designator  and type parameters  parameterized type

where .

 must refer to a type constructor which takes  type parameters .

Say the type parameters have lower bounds  and upper bounds . The parameterized 

type is well-formed if each actual type parameter , i.e.  conforms to its bounds

where  is the substitution .

Example

Given the partial type definitions:

the following parameterized types are well formed:

Example

Given the , the following types are ill-formed:above type definitions

SimpleType      ::=  SimpleType TypeArgs

TypeArgs        ::=  ‘[’ Types ‘]’

 TreeMap A  Comparable A  B   … class [ <: [ ], ] { }

 List A   … class [ ] { }

 I  Comparable I   … class extends [ ] { }

 F M _  X   … class [ [ ], ] { }

 S K    … class [ <: String] { }

 G M  Z  I  I   … class [ [ <: ], ] { }

TreeMap I  [ , String]

List I[ ]

List List[ [Boolean]]

F List  [ , Int]

G S  [ , String]

TreeMap I             [ ] // illegal: wrong number of parameters

TreeMap List I   [ [ ], Int] // illegal: type parameter not within bound

F         [Int, Boolean] // illegal: Int is not a type constructor
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where .

 must refer to a type constructor which takes  type parameters .
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F         [Int, Boolean] // illegal: Int is not a type constructor



3.3.7 Tuple Types

A   is an alias for the class , where .tuple type scala.Tuple [ , … , ]

Tuple classes are case classes whose fields can be accessed using selectors  , … , . Their _1 _n

functionality is abstracted in a corresponding  trait. The -ary tuple class and product trait Product n

are defined at least as follows in the standard Scala library (they might also add other methods and 

implement other traits).

3.3.8 Annotated Types

An    attaches   to the type .annotated type annotations

Example

The following type adds the  annotation to the type :@suspendable String

3.3.9 Compound Types

F TreeMap         [ , Int] // illegal: TreeMap takes two parameters,

                      //   F expects a constructor taking one

G S               [ , Int] // illegal: S constrains its parameter to

                      //   conform to String,

                      // G expects type constructor with a parameter

                      //   that conforms to Int

SimpleType    ::=   ‘(’ Types ‘)’

  Tuple  …  _1   …  _n  case class [+ , , + ]( : , , : )

 Product  …  extends [ , , ]

 Product  …   trait [+ , , + ] {

    productArity  override def =

   _1  def :

  …

   _n  def :

}

AnnotType  ::=  SimpleType {Annotation}

 String @suspendable

3.3.7 Tuple Types

A   is an alias for the class , where .tuple type scala.Tuple [ , … , ]

Tuple classes are case classes whose fields can be accessed using selectors  , … , . Their _1 _n

functionality is abstracted in a corresponding  trait. The -ary tuple class and product trait Product n

are defined at least as follows in the standard Scala library (they might also add other methods and 

implement other traits).

3.3.8 Annotated Types
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Example
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3.3.9 Compound Types

F TreeMap         [ , Int] // illegal: TreeMap takes two parameters,

                      //   F expects a constructor taking one

G S               [ , Int] // illegal: S constrains its parameter to

                      //   conform to String,

                      // G expects type constructor with a parameter

                      //   that conforms to Int

SimpleType    ::=   ‘(’ Types ‘)’

  Tuple  …  _1   …  _n  case class [+ , , + ]( : , , : )

 Product  …  extends [ , , ]

 Product  …   trait [+ , , + ] {

    productArity  override def =

   _1  def :

  …

   _n  def :

}

AnnotType  ::=  SimpleType {Annotation}

 String @suspendable



A    …   represents objects with members as given in the compound type with with

component types  and the refinement . A refinement  contains declarations and type 

definitions. If a declaration or definition overrides a declaration or definition in one of the component 

types , the usual rules for  apply; otherwise the declaration or definition is said to overriding

be “structural” .

Within a method declaration in a structural refinement, the type of any value parameter may only refer 

to type parameters or abstract types that are contained inside the refinement. That is, it must refer either 

to a type parameter of the method itself, or to a type definition within the refinement. This restriction 

does not apply to the method's result type.

If no refinement is given, the empty refinement is implicitly added, i.e.   …   is a with with

shorthand for   …  .with with

A compound type may also consist of just a refinement  with no preceding component types. Such a 

type is equivalent to  .AnyRef

Example

The following example shows how to declare and use a method which has a parameter type 

that contains a refinement with structural declarations.

CompoundType    ::=  AnnotType {‘with’ AnnotType} [Refinement]

                  |  Refinement

Refinement      ::=  [nl] ‘{’ RefineStat {semi RefineStat} ‘}’

RefineStat      ::=  Dcl

                  |  ‘type’ TypeDef

                  |

  Bird  name    Object case class (val : String) extends {

   fly height    …def ( : Int) =

}

  Plane  callsign    Object case class (val : String) extends {

   fly height    …def ( : Int) =

}

 takeoffdef (

  runway  : Int,

  r    callsign    fly height   : { val : String; def ( : Int) }

  ) = {

  tower print r callsign    runway. ( . + " requests take-off on runway " + )

  tower read r callsign  . ( . + " is clear for take-off")

  r fly. (1000)

}

 bird   Bird   callsign  name val = new ("Polly the parrot"){ val = }

 a380   Planeval = new ("TZ-987")

takeoff  bird(42, )

takeoff  a380(89, )

A    …   represents objects with members as given in the compound type with with
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to type parameters or abstract types that are contained inside the refinement. That is, it must refer either 

to a type parameter of the method itself, or to a type definition within the refinement. This restriction 

does not apply to the method's result type.

If no refinement is given, the empty refinement is implicitly added, i.e.   …   is a with with
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Although  and  do not share any parent class other than , the parameter Bird Plane Object r

of method  is defined using a refinement with structural declarations to accept any takeoff

object that declares a value  and a  method.callsign fly

 A reference to a structurally defined member (method call or access to a value or variable) may 

generate binary code that is significantly slower than an equivalent code to a non-structural member.

3.3.10 Infix Types

An     consists of an infix operator  which gets applied to two type operands  infix type op op

and . The type is equivalent to the type application . The infix operator  may be an op op

arbitrary identifier.

All type infix operators have the same precedence; parentheses have to be used for grouping. The 

 of a type operator is determined as for term operators: type operators ending in a colon ‘:’ associativity

are right-associative; all other operators are left-associative.

In a sequence of consecutive type infix operations , all operators  

must have the same associativity. If they are all left-associative, the sequence is interpreted as 

, otherwise it is interpreted as . )

3.3.11 Function Types

The type  represents the set of function values that take arguments of types  

and yield results of type . In the case of exactly one argument type  is a shorthand for . 

An argument type of the form  represents a  of type .call-by-name parameter

Function types associate to the right, e.g.  is the same as .

Function types are shorthands for class types that define  functions. Specifically, the -ary apply

function type  is a shorthand for the class type Function [  , ... , , ]. Such class 

types are defined in the Scala library for  between 0 and 22 as follows.

InfixType     ::=  CompoundType {id [nl] CompoundType}

Type              ::=  FunctionArgs ‘=>’ Type

FunctionArgs      ::=  InfixType

                    |  ‘(’ [ ParamType {‘,’ ParamType } ] ‘)’

 scalapackage

 Function       trait [ , ... , , ] {

   apply        def ( : , ... , : ):

    toString  override def = "<function>"

}

Although  and  do not share any parent class other than , the parameter Bird Plane Object r

of method  is defined using a refinement with structural declarations to accept any takeoff

object that declares a value  and a  method.callsign fly
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InfixType     ::=  CompoundType {id [nl] CompoundType}

Type              ::=  FunctionArgs ‘=>’ Type

FunctionArgs      ::=  InfixType

                    |  ‘(’ [ ParamType {‘,’ ParamType } ] ‘)’

 scalapackage
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}



1.  

2.  

3.  

4.  

Hence, function types are  in their result type and contravariant in their argument types.covariant

3.3.12 Existential Types

An  has the form  where  is a sequence of .existential type  forSome {  } type declarations

Let  be the types declared in  (any of the type 

parameter sections  might be missing). The scope of each type  includes the type  and the [  ]

existential clause . The type variables  are said to be  in the type . Type bound  forSome {  }

variables which occur in a type  but which are not bound in  are said to be  in .free

A  of  is a type  where  is a substitution over  such that, type instance  forSome {  }

for each , . The set of values denoted by the existential type  is  forSome { }

the union of the set of values of all its type instances.

A  of  is a type instance , where  is the substitution skolemization  forSome {  }

 and each  is a fresh abstract type with lower bound  and upper bound .

Simplification Rules

Existential types obey the following four equivalences:

Multiple for-clauses in an existential type can be merged.

E.g.,  is equivalent to . forSome {  } forSome {  }  forSome {  ; }

Unused quantifications can be dropped.

E.g.,  where none of the types defined in  are referred to by  or ,  forSome {  ; }

is equivalent to . forSome { }

An empty quantification can be dropped. E.g.,  is equivalent to . forSome { }

An existential type  where  contains a clause  forSome {  } type 

 is equivalent to the type  where  results from  by  forSome {  }

replacing every  of  in  by  and by replacing every contravariant covariant occurrence

occurrence of  in  by .

Existential Quantification over Values

As a syntactic convenience, the bindings clause in an existential type may also contain value 

declarations . An existential type  is treated as a val :  forSome { ; val : ;  }

shorthand for the type , where  is a fresh  forSome { ; type  <:  with Singleton;  }

type name and  results from  by replacing every occurrence of  with ..type

Placeholder Syntax for Existential Types

Type               ::= InfixType ExistentialClauses

ExistentialClauses ::= ‘forSome’ ‘{’ ExistentialDcl

                      {semi ExistentialDcl} ‘}’

ExistentialDcl     ::= ‘type’ TypeDcl

                    |  ‘val’ ValDcl

WildcardType   ::=  ‘_’ TypeBounds

1.  

2.  

3.  

4.  

Hence, function types are  in their result type and contravariant in their argument types.covariant
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Scala supports a placeholder syntax for existential types. A  is of the form . wildcard type _>: <:

Both bound clauses may be omitted. If a lower bound clause  is missing,  is >: >:scala.Nothing

assumed. If an upper bound clause  is missing,  is assumed.<: <:scala.Any

A wildcard type is a shorthand for an existentially quantified type variable, where the existential 

quantification is implicit.

A wildcard type must appear as type argument of a parameterized type. Let  be a 

parameterized type where  may be empty and  is a wildcard type . Then  is _>: <:

equivalent to the existential type

where  is some fresh type variable. Wildcard types may also appear as parts of , infix types function 

, or . Their expansion is then the expansion in the equivalent parameterized type.types tuple types

Example

Assume the class definitions

Here are some examples of existential types:

The last two types in this list are equivalent. An alternative formulation of the first type above 

using wildcard syntax is:

Example

The type  is equivalent to the existential typeList[List[_]]

Example

Assume a covariant type

         forSome { type >: <: }

 Ref Tclass [ ]

  Outer   T abstract class { type }

Ref T     T  java lang Number [ ] forSome { type <: . . }

Ref x T     x  Outer [ . ] forSome { val : }

Ref x_type # T     x_type  Outer  Singleton [ ] forSome { type <: with }

Ref _  java lang Number[ <: . . ]

List List t     t [ [ ] forSome { type }]

Scala supports a placeholder syntax for existential types. A  is of the form . wildcard type _>: <:

Both bound clauses may be omitted. If a lower bound clause  is missing,  is >: >:scala.Nothing

assumed. If an upper bound clause  is missing,  is assumed.<: <:scala.Any
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parameterized type where  may be empty and  is a wildcard type . Then  is _>: <:
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, or . Their expansion is then the expansion in the equivalent parameterized type.types tuple types
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Assume the class definitions
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The type  is equivalent to the existential typeList[List[_]]

Example

Assume a covariant type

         forSome { type >: <: }

 Ref Tclass [ ]

  Outer   T abstract class { type }

Ref T     T  java lang Number [ ] forSome { type <: . . }

Ref x T     x  Outer [ . ] forSome { val : }

Ref x_type # T     x_type  Outer  Singleton [ ] forSome { type <: with }

Ref _  java lang Number[ <: . . ]

List List t     t [ [ ] forSome { type }]



The type

is equivalent (by simplification rule 4 above) to

which is in turn equivalent (by simplification rules 2 and 3 above) to List[java.lang.

.Number]

3.4 Non-Value Types
The types explained in the following do not denote sets of values, nor do they appear explicitly in 

programs. They are introduced in this report as the internal types of defined identifiers.

3.4.1 Method Types

A  is denoted internally as , where  is a sequence of parameter names and types method type

 for some  and  is a (value or method) type.

This type represents named methods that take arguments named  of types  and that 

return a result of type .

Method types associate to the right:  is treated as .

A special case are types of methods without any parameters. They are written here . => T

Parameterless methods name expressions that are re-evaluated each time the parameterless method 

name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its type is implicitly 

 to a corresponding function type.converted

Example

The declarations

produce the typings

 List Tclass [+ ]

List T     T  java lang Number [ ] forSome { type <: . . }

List java lang Number     T  java lang Number [ . . ] forSome { type <: . . }
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 b x   def ( : Int): Boolean

 c x   y   z   def ( : Int) ( : String, : String): String
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3.4.2 Polymorphic Method Types

A polymorphic method type is denoted internally as  where  is a type parameter section [ ] [ ]

 for some  and  is a (value or method) type. This type [  >:  <:  >:  <: ]

represents named methods that take type arguments  which  to the lower bounds conform

 and the upper bounds  and that yield results of type .

Example

The declarations

produce the typings

3.4.3 Type Constructors

A  is represented internally much like a polymorphic method type. type constructor [   >:  <: 

 represents a type that is expected by a  or an  >:  <: ] type constructor parameter

 with the corresponding type parameter clause.abstract type constructor binding

Example

Consider this fragment of the  class:Iterable[+X]

Conceptually, the type constructor  is a name for the anonymous type Iterable [+X] 

, which may be passed to the  type constructor parameter in Iterable[X] newType

.flatMap

a   : => Int

b   : (Int) Boolean

c     : (Int) (String, String) String

 empty A  List Adef [ ]: [ ]

 union A  Comparable A  x  Set A  xs  Set A  Set Adef [ <: [ ]] ( : [ ], : [ ]): [ ]

empty  A     List A: [ >: Nothing <: Any] [ ]

union  A    Comparable A  x  Set A  xs  Set A  Set A: [ >: Nothing <: [ ]] ( : [ ], : [ ]) [ ]

 Iterable X  trait [+ ] {

   flatMap newType X   Iterable X  S f  X  newType S  newType Sdef [ [+ ] <: [ ], ]( : => [ ]): [ ]

}
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}



1.  

2.  

3.  

1.  

2.  

3.5 Base Types and Member Definitions
Types of class members depend on the way the members are referenced. Central here are three notions, 

namely:

the notion of the set of base types of a type 

the notion of a type  in some class  seen from some prefix type 

the notion of the set of member bindings of some type 

These notions are defined mutually recursively as follows.

The set of  of a type is a set of class types, given as follows.base types

The base types of a class type  with parents  are  itself, as well as the base 

types of the compound type . with … with  {  }

The base types of an aliased type are the base types of its alias.

The base types of an abstract type are the base types of its upper bound.

The base types of a parameterized type  are the base types of type , where [ ]

every occurrence of a type parameter  of  has been replaced by the corresponding 

parameter type .

The base types of a singleton type  are the base types of the type of ..type

The base types of a compound type  are the  with  with  {  } reduced 

 of the base classes of all 's. This means: Let the multi-set  be the multi-set-union of union

the base types of all 's. If  contains several type instances of the same class, say # [

 , then all those instances are replaced by one of them which conforms to all ]

others. It is an error if no such instance exists. It follows that the reduced union, if it exists, 

produces a set of class types, where different types are instances of different classes.

The base types of a type selection  are determined as follows. If  is an alias or #

abstract type, the previous clauses apply. Otherwise,  must be a (possibly parameterized) 

class type, which is defined in some class . Then the base types of  are the base #

types of  in  seen from the prefix type .

The base types of an existential type  are all types  forSome {  }  forSome { 

 where  is a base type of . }

The notion of a type   makes sense only if the prefix in class  seen from some prefix type 

type  has a type instance of class  as a base type, say . Then we define as # [ ]

follows.

If , then  in  seen from  is  itself. = .type

Otherwise, if  is an existential type , and  in  seen from  is ,  forSome {  }

then  in  seen from  is . forSome { }

Otherwise, if  is the 'th type parameter of some class , then

If  has a base type , for some type parameters , then [ ] [ ]

 in  seen from  is .

Otherwise, if  is defined in a class , then  in  seen from  is the same as  in 

seen from .
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Otherwise, if  is not defined in another class, then  in  seen from  is  itself.

Otherwise, if  is the singleton type  for some class  then.this.type

If  is a subclass of  and  has a type instance of class  among its base types, 

then  in  seen from  is .

Otherwise, if  is defined in a class , then  in  seen from  is the same as  in 

seen from .

Otherwise, if  is not defined in another class, then  in  seen from  is  itself.

If  is some other type, then the described mapping is performed to all its type 

components.

If  is a possibly parameterized class type, where 's class is defined in some other class , and 

 is some prefix type, then we use "  seen from " as a shorthand for "  in  seen from ".

The  of a type  aremember bindings

all bindings  such that there exists a type instance of some class  among the base types 

of  and there exists a definition or declaration  in  such that  results from  by 

replacing every type  in  by  in  seen from 

all bindings of the type's , if it has onerefinement

The  of a type projection  is the member binding  of the type  in . In that case, we definition S#T T S

also say that   .S#T is defined by

3.6 Relations between types
We define the following relations between types.

Name Symbolically Interpretation

Equivalence  and  are interchangeable in all contexts.

Conformance Type  conforms to (" is a subtype of") type .

Weak Conformance Augments conformance for primitive numeric types.

Compatibility Type  conforms to type  after conversions.

3.6.1 Equivalence

Equivalence  between types is the smallest congruence  such that the following holds:

If  is defined by a type alias , then  is equivalent to .type  = 

If a path  has a singleton type , then ..type .type .type

If  is defined by an object definition, and  is a path consisting only of package or object 

selectors and ending in , then ..this.type .type

Two  are equivalent if the sequences of their component are pairwise equivalent, compound types

and occur in the same order, and their refinements are equivalent. Two refinements are 
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equivalent if they bind the same names and the modifiers, types and bounds of every declared 

entity are equivalent in both refinements.

Two  are equivalent if:method types

neither are implicit, or they both are ;

they have equivalent result types;

they have the same number of parameters; and

corresponding parameters have equivalent types. Note that the names of parameters do not 

matter for method type equivalence.

Two  are equivalent if they have the same number of type parameters, polymorphic method types

and, after renaming one set of type parameters by another, the result types as well as lower and 

upper bounds of corresponding type parameters are equivalent.

Two  are equivalent if they have the same number of quantifiers, and, after existential types

renaming one list of type quantifiers by another, the quantified types as well as lower and upper 

bounds of corresponding quantifiers are equivalent.

Two  are equivalent if they have the same number of type parameters, and, after type constructors

renaming one list of type parameters by another, the result types as well as variances, lower and 

upper bounds of corresponding type parameters are equivalent.

 A congruence is an equivalence relation which is closed under formation of contexts.

 A method type is implicit if the parameter section that defines it starts with the  keyword.implicit

3.6.2 Conformance

The conformance relation  is the smallest transitive relation that satisfies the following 

conditions.

Conformance includes equivalence. If  then .

For every value type , .scala.Nothing <:  <: scala.Any

For every type constructor  (with any number of type parameters), scala.Nothing <:  

.<: scala.Any

For every class type  such that  one has . <: scala.AnyRef scala.Null <: 

A type variable or abstract type  conforms to its upper bound and its lower bound conforms to .

A class type or parameterized type conforms to any of its base-types.

A singleton type  conforms to the type of the path ..type

A singleton type  conforms to the type ..type scala.Singleton

A type projection  conforms to  if  conforms to .# #

A parameterized type  conforms to  if the following [  , … , ] [  , … , ]

three conditions hold for :

If the 'th type parameter of  is declared covariant, then .

If the 'th type parameter of  is declared contravariant, then .

If the 'th type parameter of  is declared neither covariant nor contravariant, then .

A compound type  conforms to each of its component types . with  with  { }

If  for  and for every binding  of a type or value  in  there exists a 

member binding of  in  which subsumes , then  conforms to the compound type  with 

. with  { }
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The existential type  conforms to  if its  conforms to . forSome { } skolemization

The type  conforms to the existential type  if  conforms to one of the  forSome { } type 

 of .instances  forSome { }

If  for  and  conforms to  then the method type  

conforms to .

The polymorphic type  conforms to the 

polymorphic type  if, assuming 

 one has  and  and  for 

.

Type constructors  and  follow a similar discipline. We characterize  and  by their type 

parameter clauses  and , where an  or  may include a variance annotation, 

a higher-order type parameter clause, and bounds. Then,  conforms to  if any list  -- 

with declared variances, bounds and higher-order type parameter clauses -- of valid type 

arguments for  is also a valid list of type arguments for  and . 

Note that this entails that:

The bounds on  must be weaker than the corresponding bounds declared for .

The variance of  must match the variance of , where covariance matches covariance, 

contravariance matches contravariance and any variance matches invariance.

Recursively, these restrictions apply to the corresponding higher-order type parameter 

clauses of  and .
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A value declaration or definition that defines a name  with type  subsumes a value or method 

declaration that defines  with type , provided .
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 if .

A type declaration  subsumes a type declaration type [  , … , ] >:  <: type 

 if  and .[  , … , ] >:  <: 

A type or class definition that binds a type name  subsumes an abstract type declaration type 

 if .t[  , … , ] >: L <: U
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Then the types  form a descending sequence of upper A[Any], A[A[Any]], A[A[A[Any]]], ...

bounds for  and . The least upper bound would be the infinite limit of that sequence, which does B C

not exist as a Scala type. Since cases like this are in general impossible to detect, a Scala compiler is 

free to reject a term which has a type specified as a least upper or greatest lower bound, and that bound 

would be more complex than some compiler-set limit [^4].

The least upper bound or greatest lower bound might also not be unique. For instance  and A with B

 are both greatest lower bounds of  and . If there are several least upper bounds or B with A A B

greatest lower bounds, the Scala compiler is free to pick any one of them.

[^4]: The current Scala compiler limits the nesting level of parameterization in such bounds to be at 

most two deeper than the maximum nesting level of the operand types

3.6.3 Weak Conformance

In some situations Scala uses a more general conformance relation. A type   to a type weakly conforms

, written , if  or both  and  are primitive number types and  precedes  in the 

following ordering.

A  is a least upper bound with respect to weak conformance.weak least upper bound

3.6.4 Compatibility

A type  is  to a type  if  (or its corresponding function type)  to  compatible weakly conforms

after applying . If  is a method type, it's converted to the corresponding function type. If eta-expansion

the types do not weakly conform, the following alternatives are checked in order:

view application: there's an implicit view from  to 

dropping by-name modifiers: if  is of the shape  (and  is not), 

SAM conversion: if  corresponds to a function type, and  declares a single abstract method 

whose type  to the function type , corresponds

Example

Function compatibility via SAM conversion

 A T  class [+ ] {}

 B  A Bclass extends [ ]

 C  A Cclass extends [ ]

   Byte Short

  Short Int

   Char Int

    Int Long

   Long Float

  Float Double
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Given the definitions

The application   to the first overload, as it's more foo((x: Int) => x.toString) resolves

specific:

Int => String  is compatible to  -- when expecting a value of type ToString

, you may pass a function literal from  to , as it will be SAM-ToString Int String

converted to said function;

ToString  is not compatible to  -- when expecting a function from Int => String

 to , you may not pass a .Int String ToString

3.7 Volatile Types
Type volatility approximates the possibility that a type parameter or abstract type instance of a type 

does not have any non-null values. A value member of a volatile type cannot appear in a .path

A type is  if it falls into one of four categories:volatile

A compound type  is volatile if one of the following two conditions hold. with … with  { }

One of  is a type parameter or abstract type, or

 is an abstract type and and either the refinement  or a type  for  contributes an 

abstract member to the compound type, or

one of  is a singleton type.

Here, a type   to a type  if  contains an abstract member that is also contributes an abstract member

a member of . A refinement  contributes an abstract member to a type  if  contains an abstract 

declaration which is also a member of .

A type designator is volatile if it is an alias of a volatile type, or if it designates a type parameter or 

abstract type that has a volatile type as its upper bound.

A singleton type  is volatile, if the underlying type of path  is volatile..type

An existential type  is volatile if  is volatile. forSome { }

3.8 Type Erasure
A type is called  if it contains type arguments or type variables.  is a mapping from generic Type erasure

(possibly generic) types to non-generic types. We write  for the erasure of type . The erasure 

mapping is defined as follows.

The erasure of an alias type is the erasure of its right-hand side.

 foo x     def ( : Int => String): Unit

 foo x  ToString  def ( : ): Unit

 ToString   convert x    trait { def ( : Int): String }
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The erasure of an abstract type is the erasure of its upper bound.

The erasure of the parameterized type  is .scala.Array scala.Array

The erasure of every other parameterized type  is .

The erasure of a singleton type  is the erasure of the type of ..type

The erasure of a type projection  is .# | |#

The erasure of a compound type  is the erasure of the intersection  with  with  { }

dominator of .

The erasure of an existential type  is . forSome { }

The  of a list of types  is computed as follows. Let  be the intersection dominator

subsequence of types  which are not supertypes of some other type . If this subsequence contains a 

type designator  that refers to a class which is not a trait, the intersection dominator is . Otherwise, 

the intersection dominator is the first element of the subsequence, .
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