Click here to download PDF version of specification

Table of Contents

® [exica Syntax

® |dentifiers, Names & Scopes

®* Types

® Basic Declarations and Definitions
® (Classes and Objects

® Expressions

* Implicits

¢ Ppattern Matching

® Top-Level Definitions

® XML Expressions and Patterns
® Annotations

® The Scala Standard Library

¢ Syntax Summary

® References

® Changelog

Authors and Contributors

Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp Haller,
Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz, Erik Stenman,
Matthias Zenger

Markdown Conversion by lain McGinniss.

Preface

Scalais a Java-like programming language which unifies object-oriented and functional programming.
It is a pure object-oriented language in the sense that every value is an object. Types and behavior of
objects are described by classes. Classes can be composed using mixin composition.

Scalais designed to work seamlessly with less pure but mainstream object-oriented languages like Java.

Scalaisafunctional language in the sense that every function isavalue. Nesting of function
definitions and higher-order functions are naturally supported. Scala also supports a general notion of
pattern matching which can model the algebraic types used in many functional languages.

Scala has been designed to interoperate seamlessly with Java. Scala classes can call Java methods,
create Java objects, inherit from Java classes and implement Java interfaces. None of this requires
interface definitions or glue code.

Scala has been devel oped from 2001 in the programming methods |aboratory at EPFL. Version 1.0 was
released in November 2003. This document describes the second version of the language, which was
released in March 2006. It acts a reference for the language definition and some core library modules.

It is not intended to teach Scala or its concepts; for this there are other documents.

Scala has been a collective effort of many people. The design and the implementation of version 1.0
was completed by Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger, and the author. lulian
Dragos, Gilles Dubochet, Philipp Haller, Sean McDirmid, Lex Spoon, and Geoffrey Washburn joined
in the effort to develop the second version of the language and tools. Gilad Bracha, Craig Chambers,
Erik Ernst, Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer,
Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have shaped the design of the
language through lively and inspiring discussions and comments on previous versions of this
document. The contributors to the Scala mailing list have also given very useful feedback that hel ped
us improve the language and its tools.

1.1 Lexical Syntax

Scala programs are written using the Unicode Basic Multilingual Plane (BMP) character set; Unicode
supplementary characters are not presently supported.

This chapter defines the two modes of Scala’slexical syntax, the Scala mode and the XML mode.

If not otherwise mentioned, the following descriptions of Scalatokens refer to Scala mode, and litera
characters (marked as c) refer to the ASCII fragment \ u0000 — \ uOO7F .

In Scala mode, Unicode escapes are replaced by the corresponding Unicode character with the given
hexadecimal code.

Uni codeEscape ::
hexDi gi t

‘AU fu {"u'} hexDigit hexDigit hexDigit hexDigit
‘0l ... 9| A] CF] tal |]

To construct tokens, characters are distinguished according to the following classes (Unicode general
category given in parentheses):

1. Whitespace characters. \ u0020 | \u0009 | \u000D | \uOOO0A.
2. Letters, which include lower case letters (LI), upper case letters (Lu), titlecase letters (Lt),
other letters (Lo), letter numerals (NI) and the two characters \ u0024 "$" and \ u0OO5F

Digits "0" | ...| "9".

Parentheses " (" | ")" | "[" | "1" | "{" | "}".

Delimiter characters " | "*" | """ | "." | ";" | ",".

Operator characters. These consist of all printable ASCII characters (\ u0020 - \ u007E) that
arein none of the sets above, mathematical symbols (Sm) and other symbols (So).

o 0k w

1.2 Identifiers

op = opchar {opchar}
varid = lower idrest
boundvarid ::= wvarid
| *° varid ‘7’
pl ai nid i1 = upper idrest
| wvarid
| op
id ;= plainid
| *°" { charNoBackQuoteOrNew i ne | Uni codeEscape | charEsca
i drest o= {letter | digit} [op]

There are three ways to form an identifier.

First, an identifier can start with aletter which can be followed by an arbitrary sequence of letters and
digits. Thismay be followed by underscore © _* characters and another string composed of either
letters and digits or of operator characters.

Second, an identifier can start with an operator character followed by an arbitrary sequence of operator
characters. The preceding two forms are called plain identifiers.

Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may
impose some restrictions on which strings are legal for identifiers). The identifier then is composed of
all characters excluding the backquotes themselves.

Asusual, alongest match rule applies. For instance, the string bi g_bob++="def " decomposesinto
the three identifiers bi g_bob , ++=,and def .

The rules for pattern matching further distinguish between variable identifiers, which start with alower
case |etter, and constant identifiers, which do not. For this purpose, underscore * _* istaken aslower
case, and the‘$’ character istaken as upper case.

The'$ character isreserved for compiler-synthesized identifiers. User programs should not define
identifierswhich contain ‘$' characters.

The following names are reserved words instead of being members of the syntactic class i d of lexical
identifiers.

abstract case catch cl ass def
do el se ext ends fal se final
finally for f or Some i f inmplicit
i mport | azy macr o mat ch new
nul | obj ect override package private
pr ot ect ed return seal ed super this
t hr ow trait try true type
val var whil e W th yield

= => <- < <% >: # @

The Unicode operators \ u21D2 = and \ u2190 «, which havethe ASCII equivalents => and <-
, are also reserved.

Example
Here are examples of identifiers:

Obj ect max| ndex p2p enpty_?
“yield HH _y dot _product _*
__system _MAX_LEN_

+ X

1.3 Newline Characters
sem ::="‘;" | nl {nl}

Scalais aline-oriented language where statements may be terminated by semi-colons or newlines. A
newline in a Scala source text is treated as the special token ‘nl’ if the three following criteriaare
satisfied:

1. Thetoken immediately preceding the newline can terminate a statement.

2. Thetoken immediately following the newline can begin a statement.
3. The token appears in aregion where newlines are enabled.

The tokens that can terminate a statement are: literals, identifiers and the following delimiters and
reserved words:

this nul | true fal se return type <xm -start>

_)] }

The tokens that can begin a statement are all Scala tokens except the following delimiters and reserved
words:

catch el se ext ends finally f or Sorre mat ch
with yield , . ; : = => <- <: <%
> # [)] }

A case token can begin a statement only if followed by a cl ass or obj ect token.
Newlines are enabled in:

1. all of aScalasource file, except for nested regions where newlines are disabled
2. theinterval between matching { and } brace tokens, except for nested regions where newlines
are disabled

Newlines are disabled in:

1. theinterval between matching (and) parenthesistokens, except for nested regions where
newlines are enabled

2. theinterval between matching [and] bracket tokens, except for nested regions where
newlines are enabled

3. theinterval between a case token and its matching => token, except for nested regions where
newlines are enabled

4. any regions analyzed in XML mode

Note that the brace charactersof {...} escapesin XML and string literals are not tokens, and
therefore do not enclose a region where newlines are enabled.

Normally, only asingle nl token isinserted between two consecutive non-newline tokens which are
on different lines, even if there are multiple lines between the two tokens. However, if two tokens are
separated by at least one completely blank line (i.e aline which contains no printable characters), then
two nl tokens areinserted.

The Scala grammar (given in full here) contains productions where optional nl tokens, but not
semicolons, are accepted. This has the effect that a newline in one of these positions does not terminate
an expression or statement. These positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon in place of the
newline would beillegal in every one of these cases):

® between the condition of a conditional expression or while loop and the next following
expression

® between the enumerators of afor-comprehension and the next following expression

® after theinitial type keyword in atype definition or declaration

A single new line token is accepted

* infront of an opening brace ‘{’, if that brace isalegal continuation of the current statement or
expression

® after aninfix operator, if the first token on the next line can start an expression

® infront of a parameter clause

® after an annotation

Example
The newline tokens between the two lines are not treated as statement separators.

if (x >0)
X =X -1

while (x > 0)
X =x/ 2

for (x <- 1 to 10)
println(x)

type
IntList = List[Int]

Example

new lterator[Int]

{

private var x = 0

def hasNext = true
def next = { x += 1; x }

With an additional newline character, the same code is interpreted as an object creation
followed by alocal block:

new lterator[Int]

private var x = 0
def hasNext = true
def next = { x += 1; x }

Example

X < 0[]
x > 10

With an additional newline character, the same code is interpreted as two expressions:

x <01]

X > 10

Example

def func(x: Int)
(y: Int) =x +vy

With an additional newline character, the same code is interpreted as an abstract function
definition and a syntactically illegal statement:

def func(x: Int)

(y: Int) =x +vy

Example

@erializabl e
protected class Data { ... }

With an additional newline character, the same code is interpreted as an attribute and a separate
statement (which is syntactically illegal).

@erializabl e

protected class Data { ... }

1.4 Literals

There are literals for integer numbers, floating point numbers, characters, booleans, symbols, strings.
The syntax of these literalsisin each case same asin Java.

Literal ::= ['-"] integerLiteral
| [*-'] floatingPointLiteral
| bool eanLiteral

| characterlLiteral

| stringLiteral

| interpolatedString

| synbol Literal

| ‘null”’

1.4.1 Integer Literals

i ntegerlLiteral (deci mal Nunmeral | hexNuneral)

SIS
‘0" | nonZeroDigit {digit}

deci mal Nurrer al

hexNuner al = ‘0 (‘x| “X) hexDgit {hexDigit}
digit = ‘0" | nonZeroDigit
nonZer obDi gi t = ‘1| .. 'Y

Integer literals are usually of type I nt , or of type Long whenfollowedby a L or | suffix. Values
of type I nt areall integer numbers between — 23! and 23! - 1, inclusive. Values of type Long areall
integer numbers between — 2%% and 2%° - 1, inclusive. A compile-time error occurs if an integer literal
denotes a number outside these ranges.

However, if the expected type pt of aliteral in an expression iseither Byt e, Short , or Char and
the integer number fits in the numeric range defined by the type, then the number is converted to type pt
and the literal's type is pt. The numeric ranges given by these types are:

Byt e —2t02"-1

Shor t —2B 0215~
Char 0to2'—1
Example
0 21 OxFFFFFFFF - 421

1.4.2 Floating Point Literals

digit {digit} ‘.’ digit {digit} [exponentPart]
digit {digit} [exponentPart] [fl oat Type]

digit {digit} exponentPart [fl oat Type]

digit {digit} [exponentPart] fl oatType

(‘E | ‘e) [‘+ | ‘-] digit {digit}

‘Pl 'f | ‘D |

fl oati ngPointLiteral

exponent Par t
fl oat Type

Floating point literals are of type Fl oat when followed by afloating point type suffix F or f , and
are of type Doubl e otherwise. Thetype Fl oat consistsof all IEEE 754 32-bit single-precision
binary floating point values, whereas the type Doubl e consists of all IEEE 754 64-bit double-
precision binary floating point values.

If afloating point literal in aprogram is followed by atoken starting with aletter, there must be at |east
one intervening whitespace character between the two tokens.

Example

0.0 1e30f 3. 14159f 1. Oe- 100 .1

Example
Thephrase 1.toString parsesasthree different tokens: the integer literal 1,a . , and the
identifier toString.

Example
1. isnotavalid floating point literal because the mandatory digit after the . ismissing.

1.4.3 Boolean Literals

bool eanLiteral ::= ‘true | ‘false’

The boolean literals t rue and f al se are members of type Bool ean .

1.4.4 Character Literals
characterLiteral ::= ‘'’ (charNoQuoteOrNew ine | UnicodeEscape | charEsc

A character literal isasingle character enclosed in quotes. The character can be any Unicode character
except the single quote delimiter or \ uO00A (LF) or \ u000D (CR); or any Unicode character
represented by either a Unicode escape or by an escape sequence.

Example

'a' "\u0041" “\'n' At

Note that although Unicode conversion is done early during parsing, so that Unicode characters are
generally equivalent to their escaped expansion in the source text, literal parsing accepts arbitrary
Unicode escapes, including the character literal * \ uO00A' , which can also be written using the
escape sequence '\ n' .

1.4.5 String Literals

stringLiteral :: ‘" {stringEl ement} ‘"’
stri ngEl enent char NoDoubl eQuot eOr Newl i ne | Uni codeEscape | char Escap

A string literal is a sequence of charactersin double quotes. The characters can be any Unicode
character except the double quote delimiter or \ u0O00A (LF) or \ u000D (CR); or any Unicode
character represented by either a Unicode escape or by an escape sequence.

If the string literal contains a double quote character, it must be escaped using "\ " " .

The value of astring literal isan instance of class String .
Example

"Hello, world!\n"
"\"Hello,\" replied the world."

Multi-Line String Literals

stringLliteral ::= ‘""" pultiLineChars ‘"""’
mul t1Li neChar s {[*""1 [*""] char NoDoubl eQuote} {‘"’}

A multi-line string literal is a sequence of characters enclosed intriplequotes """ ... """ .The
sequence of charactersis arbitrary, except that it may contain three or more consecutive quote
characters only at the very end. Characters must not necessarily be printable; newlines or other control
characters are also permitted. Unicode escapes work as everywhere el se, but none of the escape
sequences here are interpreted.

Example

"""the present string
spans three
| i nes. moan

Thiswould produce the string:

the present string
spans three
I i nes.

The Scalalibrary contains a utility method st ri pMar gi n which can be used to strip leading
whitespace from multi-line strings.
The expression

"""the present string
| spans three
|lines.""".stripMargin

evaluatesto

the present string
spans three
lines.

Method st ri pMar gi n isdefined in class scala.collection.immutable.StringLike. Because

there is a predefined implicit conversion from String to StringLi ke , the method is
applicableto all strings.

Interpolated string

https://www.scala-lang.org/api/current/scala/collection/immutable/StringLike.html

i nterpol atedString alphaid ‘"’ {printableChar (‘" | '$) | escape}
al phaid “"""" {[*""] ['"'] char (‘""" | “$) | esc
Y

‘$ id

‘$’ Bl ockExpr

upper idrest

varid

escape

al phai d

Interpolated string consists of an identifier starting with aletter immediately followed by a string
literal. There may be no whitespace characters or comments between the leading identifier and the
opening quote ‘"’ of the string. The string literal in ainterpolated string can be standard (single quote)
or multi-line (triple quote).

Inside an interpolated string none of the usual escape characters are interpreted (except for unicode
escapes) no matter whether the string literal is normal (enclosed in single quotes) or multi-line
(enclosed in triple quotes). Instead, there are two new forms of dollar sign escape. The most general
form encloses an expressionin ‘${’ and ‘}’, i.e. ${expr} . The expression enclosed in the braces that
follow the leading ‘$ character is of syntactical category Bl ockExpr . Hence, it can contain multiple
statements, and newlines are significant. Single ‘'$'-signs are not permitted in isolation in ainterpolated
string. A single ‘$'-sign can still be obtained by doubling the‘$’ character: ‘$% .

The simpler form consists of a‘$'-sign followed by an identifier starting with aletter and followed
only by letters, digits, and underscore characters, e.g $i d . The simpler form is expanded by putting
braces around the identifier, e.g $i d isequivalentto ${i d} . Inthefollowing, unless we explicitly
state otherwise, we assume that this expansion has already been performed.

The expanded expression is type checked normally. Usually, Stri ngCont ext will resolveto the
default implementation in the scala package, but it could also be user-defined. Note that new
interpolators can also be added through implicit conversion of the built-in scal a. St ri ngCont ext .

One could write an extension
inmplicit class Stringlnterpolation(s: StringContext) {

def id(args: Any*) = ???

1.4.6 Escape Sequences

The following escape sequences are recognized in character and string literals.

char EscapeSeq unicode name char
‘Yt b \ u0008 backspace BS
A \ u0009 horizontal tab HT

‘Ao \ u000a linefeed LF

A \ u000c form feed FF

A \ u000d carriage return CR
AR \ u0022 double quote

A \ u0027 single quote

A \ u005¢ backslash \

It isacompile time error if abackslash character in acharacter or string literal does not start avalid
escape sequence.

1.4.7 Symbol literals
synbol Literal ::= ‘'’ plainid

A symbol literal ' x isashorthand for the expression scal a. Synbol ("x") andisof the literal type
'x . Synbol isacaseclass, which isdefined asfollows.

package scal a
final case class Synbol private (nanme: String) {
override def toString: String ="'" + nane

The appl y method of Synbol 'scompanion object caches weak referencesto Synbol s, thus
ensuring that identical symbol literals are equivalent with respect to reference equality.

1.5 Whitespace and Comments
Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:

A single-line comment is a sequence of characters which startswith // and extends to the end of the
line.

A multi-line comment is a sequence of characters between /* and */ . Multi-line comments may be
nested, but are required to be properly nested. Therefore, acomment like /* /* */ will bereected
as having an unterminated comment.

1.6 Trailing Commas in Multi-line Expressions

If acomma (,) isfollowed immediately, ignoring whitespace, by a newline and a closing parenthesis (
)), bracket (]), or brace (}), then the commaistreated as a"trailing comma’ and isignored. For
example:

foo(
23,
“"bar",
true,

1.7 XML mode

In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to
XML mode when encountering an opening angle bracket ‘<’ in the following circumstance: The ‘<’
must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately
followed by a character starting an XML name.

(whitespace | ‘(" | ‘{") ‘< (XNanmeStart | ‘! | *?")
XNameStart ::=‘_" | BaseChar | ldeographic // as in WBC XM., but w thou

The scanner switches from XML mode to Scalamodeif either of theseistrue:

® the XML expression or the XML pattern started by theinitial ‘<’ has been successfully parsed

® the parser encounters an embedded Scala expression or pattern and forces the Scanner back to
normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code
and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of
XML and Scala expressions adequately

Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.

Example
The following value definition uses an XML literal with two embedded Scala expressions:

val b = <book>
<title>The Scal a Language Specification</title>
<ver si on>{ scal aBook. ver si on} </ ver si on>
<aut hor s>{ scal aBook. aut hors. nkList("", ", ", "")}</authors>
</ book>

2.1 ldentifiers, Names and Scopes

Names in Scalaidentify types, values, methods, and classes which are collectively called entities.
Names are introduced by local definitions and declarations, inheritance, import clauses, or package
clauses which are collectively called bindings.

Bindings of different kinds have a precedence defined on them:

1. Definitions and declarations that are local, inherited, or made available by a package clause and
also defined in the same compilation unit as the reference to them, have highest precedence.

2. Explicit imports have next highest precedence.

Wildcard imports have next highest precedence.

4. Definitions made available by a package clause, but not also defined in the same compilation
unit as the reference to them, as well as imports which are supplied by the compiler but not
explicitly written in source code, have lowest precedence.

w

There are two different name spaces, one for types and one for terms. The same name may designate a
type and a term, depending on the context where the name is used.

A binding has a scope in which the entity defined by a single name can be accessed using asimple
name.

Scopes are nested. A binding in some inner scope shadows bindings of lower precedence in the same
scope aswell as bindings of the same or lower precedence in outer scopes.

Note that shadowing isonly apartial order. In the following example, neither binding of x shadows
the other. Consequently, the referenceto x inthelast line of the block is ambiguous.

val x =1
locally {
i mport p. X X
X

A reference to an unqualified (type- or term-) identifier x is bound by the unique binding, which

® defines an entity with name x in the same namespace as the identifier
¢ shadows all other bindings that define entities with name x in that namespace.

Itisan error if no such binding exists. If x isbound by an import clause, then the smple name x is
taken to be equivalent to the qualified name to which x is mapped by the import clause. If x is bound
by a definition or declaration, then x refers to the entity introduced by that binding. In that case, the
type of x isthe type of the referenced entity.

A reference to aqualified (type- or term-) identifier ex refers to the member of the type T of e which
has the name x in the same namespace as the identifier. It isan error if 7 isnot avalue type. The type
of ex isthe member type of the referenced entity in 7.

Binding precedence implies that the way sourceis bundled in files affects name resolution. In
particular, imported names have higher precedence than names, defined in other files, that might
otherwise be visible because they are defined in either the current package or an enclosing package.

Note that a package definition is taken as lowest precedence, since packages are open and can be
defined across arbitrary compilation units.

package util {
i mport scala.util
cl ass Random
obj ect Test extends App {
println(new util.Random) // scala.util.Random

The compiler suppliesimportsin apreamble to every sourcefile. This preamble conceptually has the
following form, where braces indicate nested scopes:

i mport java.lang. _
{
i mport scal a. _
{
i mport Predef.
{ /'* source */ }

These imports are taken as lowest precedence, so that they are always shadowed by user code, which
may contain competing imports and definitions. They also increase the nesting depth as shown, so that
later imports shadow earlier ones.

As a convenience, multiple bindings of atype identifier to the same underlying type is permitted. This
is possible when import clauses introduce a binding of a member type alias with the same binding
precedence, typically through wildcard imports. This alows redundant type aliases to be imported
without introducing an ambiguity.

object X { type T
object Y { type T

annotation.tailrec }
annotation.tailrec }

object Z {
import X. _, Y._, annotation.{tailrec => T} [/ OK all T nean tailrec
@ def f: Int ={ f ; 42} [/ error, f is not tail recu

Similarly, imported aliases of names introduced by package statements are allowed, even though the
names are strictly ambiguous:

/'l c.scala
package p { class C}

/1 xy.scal a
i mport p._
package p { class X extends C}
package q { class Y extends C}

Thereferenceto C inthedefinition of X isstrictly ambiguous because C isavailable by virtue of the
package clause in adifferent file, and can't shadow the imported name. But because the references are
the same, the definition is taken as though it did shadow the import.

2.1.1 Example

Assume the following two definitions of objects named X in packages p and q in separate
compilation units.

package p {
object X{ val x =1; val y =2}
}
package q {
object X { val x =true; val y = false }
}

The following program illustrates different kinds of bindings and precedences between them.

package p { /1 "X bound by package cl ause
i mport Consol e. _ /1 “println" bound by wildcard inport
object Y {
println(s"L4: $X") Il "X refers to p.X here
locally {
i mport q._ /1 "X bound by wldcard inport
println(s"L7: $X") Il "X refers to "q.X here
i mport X _ /1 “x" and "y' bound by wildcard inport
println(s"L9: $x") Il "x'" refers to "q. X x' here
locally {
val x = 3 /1 " x" bound by local definition
println(s"L12: $x") /Il "x' refers to constant " 3' here
local ly {

i mport q. X _ /1 “x" and "y' bound by wildcard inport

11

/11

133333

println(s"L15: $x")
i mport Xy
println(s"L17: $y")
locally {
val x = "abc"
import p. X _
println(s"L21: $y")
println(s"L22: $x")

/11
/11
Il

/11
Il
11
/11

reference to "x' is anbi guous here
"y' bound by explicit inmport
Ly

T X
T X

refers to "q. X y' here

bound by | ocal definition
and "y' bound by wildcard inport

reference to "y' is anbiguous here

T X

refers to string "abc" here

3.1 Types

Functi onArgTypes ‘=>" Type
I nfixType [Existential d ause]
I nfixType
‘(" [Paraniype {‘,’ Paramlype }] ')’
‘forSome’ ‘{’ Existential Dcl
{sem ExistentialDcl} *}’

Type

Functi onAr gTypes

Exi stenti al d ause ::

Exi stenti al Dcl = ‘type’ TypeDcl
| “val’ Val Dcl
I nfixType = ConpoundType {id [nl] ConpoundType}
CompoundType = Annot Type {‘with’ Annot Type} [Refinenent]
| Refinenment
Annot Type = Sinpl eType {Annot ati on}
Si mpl eType = Sinpl eType TypeArgs
| SinpleType ‘# id
| Stableld
| Path .’ ‘type’
| Literal
| “ (" Types ")’
TypeAr gs = ‘[’ Types ‘]’
Types = Type {‘,’ Type}

We distinguish between first-order types and type constructors, which take type parameters and yield
types. A subset of first-order types called value types represents sets of (first-class) values. Value types
are either concrete or abstract.

Every concrete value type can be represented as a class type, i.e. atype designator that refersto a class
or atrait 1, or as a compound type representing an intersection of types, possibly with a refinement that
further constrains the types of its members.

Abstract value types are introduced by type parameters and abstract type bindings. Parentheses in types
can be used for grouping.

Non-value types capture properties of identifiers that are not values. For example, a type constructor
does not directly specify atype of values. However, when atype constructor is applied to the correct
type arguments, it yields a first-order type, which may be avalue type.

Non-value types are expressed indirectly in Scala. E.g., amethod type is described by writing down a
method signature, which in itself isnot areal type, although it gives rise to a corresponding method
type. Type constructors are another example, as one can write t ype Swap[ni_, _], a,b] = m
[b, a] ,butthereisno syntax to write the corresponding anonymous type function directly.

1 We assume that objects and packages aso implicitly define a class (of the same name as the object or
package, but inaccessible to user programs).

3.2 Paths

Pat h .= Stableld

| [id*.’] this
Stabl el d o= id

| Path *.’" id

| [id*."] ‘super’ [ClassQalifier] .’ id
ClassQalifier ::="‘["id ‘]’

Paths are not types themselves, but they can be a part of named types and in that function form a
central role in Scala’stype system.

A path is one of the following.

® The empty path # (which cannot be written explicitly in user programs).

® C.this,where(C referencesaclass. Thepath t hi s istaken asashorthand for C.t hi s where
C isthe name of the class directly enclosing the reference.

® pXwhere 2 isapath and x is a stable member of P. Stable members are packages or members
introduced by object definitions or by value definitions of non-volatile types.

® (C.super xorC.super [M]x where C references a class and x references a stable member of
the super class or designated parent class A of C. The prefix super istaken as ashorthand for
C.super where C isthe name of the class directly enclosing the reference.

A stableidentifier isapath which endsin an identifier.

3.3 Value Types

Every value in Scala has atype which is of one of the following forms.

3.3.1 Singleton Types
Sinmpl eType ::= Path ‘.’ ‘type’

A singleton typeis of the form P-t ype . Where 2 is a path pointing to a value which conforms to

scal a. AnyRef , the type denotes the set of values consisting of nul | and the value denoted by 2 (i.
e., thevauev for which v eq p). Where the path does not conform to scal a. AnyRef thetype
denotes the set consisting of only the value denoted by 2.

3.3.2 Literal Types

Sinmpl eType ::= Literal

A litera type 1it isaspecia kind of singleton type which denotesthe single literal value 1it .
Thus, the type ascription 1: 1 givesthe most precise typeto theliteral value 1 : theliteral type 1.

At run time, an expression e isconsideredto haveliteral type it if e == |it . Concretdy, the
result of e.islnstanceOf[lit] and e match { case _ : lit =>} isdetermined by
evaluating e == lit .

Literal types are available for all types for which there is dedicated syntax, except Uni t . This
includes the numeric types (other than Byt e and Short which don't currently have syntax),
Bool ean, Char , String and Synbol .

3.3.3 Stable Types

A stabletypeisasingleton type, aliteral type, or atype that is declared to be a subtype of trait
scal a. Singl eton.

3.3.4 Type Projection
Sinpl eType ::= SinpleType ‘# id

A type projection T#x references the type member named x of type T.

3.3.5 Type Designators
Simpl eType ::= Stableld

A type designator refers to a named value type. It can be ssmple or qualified. All such type designators
are shorthands for type projections.

Specifically, the unqualified type name ¢ where ¢ is bound in some class, object, or package C is taken
asashorthand for C.t hi s. t ype# ¢. If £ isnot bound in aclass, object, or package, then ¢ istaken asa
shorthand for # . t ype# t.

A qualified type designator hastheform p.t where p isapath andtisatype name. Such atype
designator is equivalent to the type projection p. t ype#t .

Example
Some type designators and their expansions are listed below. We assume alocal type parameter
t,avalue mai nt abl e with atype member Node and the standard class scal a. I nt

Designator Expansion
t #. type#t
I nt scal a. type#l nt
scal a. I nt scal a. t ype#l nt

dat a. mai nt abl e. Node dat a. nai nt abl e. t ype#Node

3.3.6 Parameterized Types

Si mpl eType TypeArgs
‘[Types ']’

Si mpl eType
TypeAr gs

A parameterized type T[Tb Tn] consists of atype designator 7 and type parameters 7'y, .- T'»
wheren> 1.
T must refer to atype constructor which takes n type parameters ap ---» .

Say the type parameters have lower bounds L1, ---» L» and upper bounds U ---» Un, The parameterized
typeiswell-formed if each actual type parameter conformsto its bounds, i.e. oL; < : T; < :oU;
where ¢ is the substitution [015 =Ty ..o,y = T,,]_

Example
Given the partia type definitions:

cl ass TreeMap[A <: Conparable[A], B] { ...}
class List[A] { ...}
class | extends Conparable[l] { ...}

class FIM_], X { ...}
class §{K <: String] { ...}

class gdM zZz<: 1], I] { ...}

the following parameterized types are well formed:

TreeMap[l, String]
List[I]
Li st [Li st [Bool ean]]

F[List, Int]
gsS, String]
Example

Given the above type definitions, the following types are ill-formed:

TreeMap[|] /1 illegal: wong nunber of paraneters
TreeMap[List[I], Int] // illegal: type paraneter not w thin bound

F[I nt, Bool ean] /1 illegal: Int is not a type constructor

F[TreeMap, Int] /1 illegal: TreeMap takes two paraneters,
11 F expects a constructor taking one
gsS, Int] /] illegal: S constrains its paraneter to
I conformto String,
/'l G expects type constructor with a paraneter
I that conforns to Int

3.3.7 Tuple Types

Si mpl eType D= ‘(" Types ‘)’
Atupletype(Tp -.~,Tn)isan adliasfor theclass scal a. Tupl e[Iy, ..., T, ,wheren>2.
Tuple classes are case classes whose fields can be accessed using selectors _1 , ..., _n.Their

functionality is abstracted in a corresponding Pr oduct trait. The n-ary tuple class and product trait
are defined at least as follows in the standard Scala library (they might also add other methods and
implement other traits).

case class Tuple+11, ..., +T(_1: Ty, ..., _n: Ty
extends Product.[71, .., T/
trait Product] +71, .., +T4 {
override def productArity = n
def 1: T,
def _n Tn
}

3.3.8 Annotated Types
Annot Type ::= SinpleType {Annotation}
An annotated type T 95 ---»> % ataches annotations 4y ---> dnto the type 7.

Example
The following type adds the @uspendabl e annotation tothetype String :

String @uspendabl e

3.3.9 Compound Types

CompoundType = Annot Type {‘with’ Annot Type} [Refinement]
| Refinenent

Ref i nement = [nl] “{" RefineStat {sem RefineStat} '}’

Ref i neSt at Dcl

‘“type’ TypeDef

A compoundtype T1 with ... with T AR} represents objects with members as given in the
component types T ---» T and the refinement {R}. A refinement 1R} contains declarations and type
definitions. If adeclaration or definition overrides a declaration or definition in one of the component
types T, ---» T'n, the usual rules for overriding apply; otherwise the declaration or definition is said to
be “structural” .

Within amethod declaration in a structural refinement, the type of any value parameter may only refer
to type parameters or abstract types that are contained inside the refinement. That is, it must refer either
to atype parameter of the method itself, or to atype definition within the refinement. This restriction
does not apply to the method's result type.

If no refinement is given, the empty refinement isimplicitly added, i.e. T1with ... with Thisa
shorthand for Ti with ... with Tab.

A compound type may also consist of just arefinement {R} with no preceding component types. Such a
typeisequivalent to AnyRef 1R},

Example
The following example shows how to declare and use a method which has a parameter type
that contains a refinement with structural declarations.

case class Bird (val nane: String) extends Object {
def fly(height: Int) = ..
}
case class Plane (val callsign: String) extends Object {
def fly(height: Int) = ..
}
def takeoff(
runway: Int,
r: { val callsign: String; def fly(height: Int) }

) = A{
tower.print(r.callsign + " requests take-off on runway " + runway)
tower.read(r.callsign + " is clear for take-off")
r.fly(1000)

}

val bird = new Bird("Polly the parrot"){ val callsign = nane }

val a380 = new Pl ane("TZ-987")

t akeof f (42, bird)
t akeof f (89, a380)

Although Bird and Pl ane do not share any parent class other than Obj ect , the parameter r
of method t akeof f isdefined using arefinement with structural declarations to accept any
object that declaresavalue cal | sign anda fly method.

2 A reference to a structurally defined member (method call or access to avalue or variable) may
generate binary code that is significantly slower than an equivalent code to a non-structural member.

3.3.10 Infix Types
I nfixType ;.= CompoundType {id [nl] ConpoundType}

Aninfixtype I'1 op 72 consists of an infix operator op which gets applied to two type operands 71
and T2. Thetypeis equivaent to the type application op [Tb Tﬂ. Theinfix operator op may be an
arbitrary identifier.

All typeinfix operators have the same precedence; parentheses have to be used for grouping. The
associativity of atype operator is determined as for term operators: type operators ending in acolon *:’
areright-associative; all other operators are | eft-associative.

In asequence of consecutive type infix operations ‘e ©P> tv 0P --+» 0P In 4| operators Py -+ OPy
must have the same associativity. If they are all |eft-associative, the sequence is interpreted as

(o (tOOpzt 1)0p2 e)Opntn, otherwiseit isinterpreted as ‘%P](t 101’2(s Opntn) =))

3.3.11 Function Types

Type
Functi onArgs

Functi onArgs ‘=>" Type
I nfixType
| (' [Paramlype {‘,’ Paramlype }] ‘)’

Thetype(T ..., T4)= U represents the set of function values that take arguments of types T ---» Tn
and yield results of type U. In the case of exactly one argument type 7= U is a shorthand for (1)=>U.
An argument type of the form = 7 represents a call-by-name parameter of type 7.

Function types associate to the right, eg. S = T= U isthe same as S = (T'= U),

Function types are shorthands for class types that define appl y functions. Specifically, the n-ary
function type (T, ..., T»)= U is ashorthand for the class type Function = 71, ... , T, U]. Such class
types are defined in the Scalalibrary for » between 0 and 22 as follows.

package scal a

trait Function —T1, ..., —Tu] {
def apply(xl Tv, ..., xa Tp): U
override def toString = "<function>"

Hence, function types are covariant in their result type and contravariant in their argument types.

3.3.12 Existential Types

Type c:= InfixType Existential C auses
Existential dauses ::= ‘forSome’ ‘{’ Existential Dcl
{sem ExistentialDcl} *}’
Exi stenti al Dcl c:= ‘type’ TypeDcl
| “val’ Val Dcl

An existential type hastheform 7 for Sone { € } where @ isasequence of type declarations,

Let? \[tps J > 1L &It 2 U o t"[tpsn] > : Ly &It 1 Un pe the types declared in Q (any of the type
parameter sections [‘7%] might be missing). The scope of each type ¢ includes the type 7' and the
existential clause ©. The type variables ; are said to be bound inthetype 7 for Some { © } . Type
variables which occur in atype 7 but which are not bound in 7 are said to befreein 7.

A typeinstanceof 7 forSone { Q } isatypesT whereo isasubstitution over 1, ---» f such that,
for each i, oL; &It; 1 ot; < :oU;, The set of values denoted by the existential type 7 f or Sone {0} is
the union of the set of values of all itstype instances.

A skolemizationof 7 forSome { O } isatypeinstance ¢T, where o is the substitution
[ty ... t/ts] and each f; is a fresh abstract type with lower bound oL: and upper bound cU;.

Simplification Rules

Existential types obey the following four equivalences:

1. Multiplefor-clausesin an existential type can be merged.
E.g., T forSome { O} forSome { O } isequivalentto T forSome { @ ; O} .

2. Unused quantifications can be dropped.
E.g, T forSome { @ ; O} wherenoneof thetypesdefinedin Q arereferred to by 7 or O,
isequivalentto 7 for Sone { ¥} .

3. An empty quantification can be dropped. E.g., 7 for Some { } isequivalentto 7.

4. Anexistential type 7 forSone { O } where Q containsaclause t ype
ftps| > : L&It; : U isequivalent tothetype T" for Some { © } where I" resultsfrom 7 by
replacing every covariant occurrence of ¢ in 7' by U and by replacing every contravariant
occurrenceof ¢in T by L.

Existential Quantification over Values

As a syntactic convenience, the bindings clause in an existential type may also contain value
declarations val x: T.Anexistentid type 7 forSome { @; val x S;Q } istreatedasa
shorthand for thetype 7" forSome { ©; type ¢ <. S with Singleton; @ },wherezisafresh
type name and T results from T by replacing every occurrence of x. t ype with .

Placeholder Syntax for Existential Types

W dcardType ::= ' _' TypeBounds

Scala supports a placeholder syntax for existential types. A wildcard typeisof theform _>: [<: U .
Both bound clauses may be omitted. If alower bound clause >: L ismissing, >: scal a. Not hi ng is
assumed. If an upper bound clause <: U ismissing, <: scal a. Any isassumed.

A wildcard type is a shorthand for an existentially quantified type variable, where the existential
guantification isimplicit.

A wildcard type must appear as type argument of a parameterized type. Let 7 = pdtargs, T, targs] pea
parameterized type where targs, targs may be empty and 7 isawildcardtype _>: I<: U . Then T is
equivalent to the existential type

p.c{targs, t, targs’] forSome { type ¢t > L < U}

where ¢ is some fresh type variable. Wildcard types may also appear as parts of infix types, function
types, or tuple types. Their expansion is then the expansion in the equivalent parameterized type.

Example
Assume the class definitions

class Ref[T]
abstract class Quter { type T}

Here are some examples of existential types:

Ref[T] forSome { type T <: java.lang. Nunber }
Ref [x. T] forSone { val x: Quter }
Ref [x_type # T] forSome { type x_type <: Quter with Singleton }

Thelast two typesin thislist are equivalent. An alternative formulation of the first type above
using wildcard syntax is:

Ref [_ <: java.l ang. Nunber]

Example
Thetype List[List[_]] isequivaenttotheexistentia type

List[List[t] forSome { type t }]

Example
Assume a covariant type

class List[+T]

Thetype
List[T] forSome { type T <: java.lang. Nunber }
isequivalent (by simplification rule 4 above) to
Li st[java.l ang. Nunber] forSone { type T <: java.lang. Nunber }

which isin turn equivalent (by simplification rules 2 and 3 above) to Li st[j ava. | ang.
Nunber] .

3.4 Non-Value Types

The types explained in the following do not denote sets of values, nor do they appear explicitly in
programs. They are introduced in this report as the internal types of defined identifiers.

3.4.1 Method Types

A method type is denoted internally as (Ps)U, where (Ps) is a sequence of parameter names and types

(pf Ty ... b, Tn) for somen>0and U isa(vaue or method) type.
This type represents named methods that take arguments named Py > P of types T ---» T'n and that
return aresult of type U.

Method types associate to the right: (Ps\Psy)U is treated as (Ps \(Psy)U).

A special case are types of methods without any parameters. They are written here => T.
Parameterl ess methods name expressions that are re-evaluated each time the parameterless method
nameis referenced.

Method types do not exist as types of values. If amethod name is used as avalue, itstypeis implicitly

converted to a corresponding function type.

Example
The declarations

def a: Int
def b (x: Int): Bool ean
def ¢ (x: Int) (y: String, z: String): String

produce the typings

a: => Int
(I'nt) Bool ean
(Int) (String, String) String

3.4.2 Polymorphic Method Types

A polymorphic method type is denoted internally as [£ps] T where [Ips] isatype parameter section
[a1 > Ly < Up...,ap >; L, < U, forsomen>0and T isa(vaueor method) type. Thistype
represents named methods that take type arguments S ---»S» which conform to the lower bounds

Ly ..., Ly andthe upper bounds Uy ---> Un and that yield results of type T.

Example
The declarations

def enpty[A]: List[A]
def union[A <: Conparabl e[A]] (x: Set[A], xs: Set[A]): Set[A]

produce the typings

enpty : [A > Nothing <: Any] List[A]
union : [A > Nothing <: Conparable[A]] (x: Set[A], xs: Set[A]) Set[A]

3.4.3 Type Constructors

A type constructor is represented internally much like a polymorphic method type. [+ @1 > L <:
Up ..., *an > L, <: U, T representsatypethat is expected by atype constructor parameter or an
abstract type constructor binding with the corresponding type parameter clause.

Example
Consider thisfragment of the 1t er abl e[+X] class:

trait lIterable[+X {
def fl at Map[newType[+X] <: Iterable[X], S](f: X => newlype[S]): newly

Conceptually, the type constructor |t er abl e isaname for the anonymoustype [+X]
It erabl e[X] , which may be passed to the newType type constructor parameter in
flat Map .

3.5 Base Types and Member Definitions

Types of class members depend on the way the members are referenced. Central here are three notions,
namely:

1. the notion of the set of base types of atype T’
2. the notion of atype 7 in some class C seen from some prefix type S
3. the notion of the set of member bindings of some type T

These notions are defined mutually recursively as follows.
1. The set of base types of atypeisaset of classtypes, given asfollows.

* The base types of aclasstype C with parents s ---> T are C itself, aswell asthe base
types of the compound type 71 with ..with Tn { R} .

® The base types of an aliased type are the base types of its alias.

® The base types of an abstract type are the base types of its upper bound.

* The base types of a parameterized type C[I'v ---»] arethe base types of type C, where
every occurrence of atype parameter 4; of C has been replaced by the corresponding
parameter type 7.

® The basetypes of asingleton type P.type arethe base types of thetype of 7.

* Thebasetypesof acompoundtype 71 with ... with T, { R} arethereduced
union of the base classes of all 7''s. This means: Let the multi-set S be the multi-set-union of
the base types of all T''s. If S contains several type instances of the same class, say S'#([
T, ...T i] (ie 1), then all those instances are replaced by one of them which conformsto all
others. It isan error if no such instance exists. It follows that the reduced union, if it exists,
produces a set of class types, where different types are instances of different classes.

® The base types of atype selection S#7 are determined asfollows. If T isan alias or
abstract type, the previous clauses apply. Otherwise, T must be a (possibly parameterized)
class type, which is defined in some class B. Then the base typesof S#7 arethe base
types of 7 in B seen from the prefix type S.

* The base types of an existentia type 7 for Some { O } arealltypes S for Sone {
O} where S isabasetypeof 7.

2. Thenotion of atype T in class C seen from some prefix type S makes sense only if the prefix
type S has atype instance of class C asabasetype, say S#C[v ---» '] . Then we define as
follows.

® If § = ctype,thenTinC seenfromSisT itself.
* Otherwisg, if S isan existential type S forSome { € } ,and Tin C seenfromS'is T,
then 7in C seenfrom Sis 7' f or Some {0} .
® Otherwise, if T isthei'th type parameter of some class D, then
* |f Shasabasetype D[Uy ---» Ux] , for sometype parameters [Up ---> Ux] |, then
TinC seenfrom SisU..
® Otherwisg, if Cisdefinedinaclass C, then 7in C seenfrom Sisthesameas 7in C
seen from S

® Otherwise, if C isnot defined in another class, then T in C seen from S is T itself.
® Otherwise, if T isthesingletontype D. t his.type for someclass D then
® If Disasubclassof C and S has atype instance of class D among its base types,
then T in C seenfrom S'is S.
® Otherwise, if C isdefinedinaclass C, then T in C seenfrom Sisthesameas T in C
seen from §S.
® Otherwise, if C isnot defined in another class, then T in C seen from S is T itself.
® |f T issome other type, then the described mapping is performed to all itstype
components.
If 7 isapossibly parameterized class type, where T's class is defined in some other class D, and
S is some prefix type, then we use " T seen from S" as ashorthand for "7 in D seen from S".

3. The member bindings of atype T are

1. all bindings d such that there exists a type instance of some class C among the base types
of 7 and there exists adefinition or declaration 4 in C such that 4 results from d by
replacing every type T" ind by T"in C seen from T

2. al bindings of the type's refinement, if it has one

The definition of atype projection S#T isthe member binding 97 of thetype T in S. In that case, we
aso say that S#T isdefined by dr.

3.6 Relations between types

We define the following relations between types.

Name Symbolically Interpretation

Equivalence T=U 7 and U areinterchangeablein all contexts.
Conformance T< :U Type T conformsto (" is asubtype of") type U.
Weak Conformance T &tt; =, U Augments conformance for primitive numeric types.
Compatibility Type T conformsto type U after conversions.

3.6.1 Equivalence

Equiva ence (=) between typesisthe smallest congruence 3 such that the following holds:

® |f risdefined by atypeadias type ¢t = T ,thentisequivalentto T.

® |f apath P hasasingletontype 4. type ,then P.type =4.type.

* |f Oisdefined by an object definition, and 2 is a path consisting only of package or object
selectorsand ending in O, then O.this.type =p.type.

* Two compound types are equivalent if the sequences of their component are pairwise equivalent,
and occur in the same order, and their refinements are equivalent. Two refinements are

equivalent if they bind the same names and the modifiers, types and bounds of every declared
entity are equivalent in both refinements.
Two method types are equivalent if:

® neither areimplicit, or they both are 4;

* they have equivalent result types;

® they have the same number of parameters; and

® corresponding parameters have equivalent types. Note that the names of parameters do not

matter for method type equivalence.

Two polymorphic method types are equivaent if they have the same number of type parameters,
and, after renaming one set of type parameters by another, the result types as well as lower and
upper bounds of corresponding type parameters are equivalent.
Two existential types are equivaent if they have the same number of quantifiers, and, after
renaming one list of type quantifiers by another, the quantified types as well as lower and upper
bounds of corresponding quantifiers are equivalent.
Two type constructors are equivalent if they have the same number of type parameters, and, after
renaming one list of type parameters by another, the result types as well as variances, lower and
upper bounds of corresponding type parameters are equivalent.

3 A congruence is an equivalence relation which is closed under formation of contexts.
4 A method typeisimplicit if the parameter section that definesit startswith the i npli cit keyword.

3.6.2 Conformance

The conformance relation (&I; :) isthe smallest transitive relation that satisfies the fol lowi ng
conditions.

Conformance includes equivalence. If 7= U then T < : U,
For every valuetype 7', scal a. Nothing <: T <: scal a. Any .
For every type constructor 7' (with any number of type parameters), scal a. Nothing <: T
<: scal a. Any .
For every classtype 7 suchthat T <: scal a. AnyRef onehas scala. Null <: T.
A type variable or abstract type ¢ conforms to its upper bound and its lower bound conforms to z.
A class type or parameterized type conforms to any of its base-types.
A singletontype 2.t ype conformsto the type of the path 2.
A singletontype P.type conformstothetype scal a. Si ngl et on .
A typeprojection T#t conformsto U#t if T conformsto U.
A parameterizedtype 7[71, ..., T, conformsto T7[U1, ..., U, if thefollowing
three conditionshold for i€ 1, ..., n:
1. If the i'th type parameter of T isdeclared covariant, then 7 &lIt; : U;,
2. If the i'th type parameter of T is declared contravariant, then U; < = T,
3. If the /'th type parameter of T is declared neither covariant nor contravariant, then U; =T,
A compoundtype T1 with ... with T, { R} conformsto each of its component types 7.
If T < : U fori €1, ..., nand for every binding 4 of atype or value x in R there exists a
member binding of x in 7 which subsumes 4, then T conforms to the compound type U1 wi t h
. with U, {R}.

* Theexistential type 7 for Sone {J} conformsto U if its skolemization conformsto U.
* Thetype T conformsto the existential type U f or Some { O} if T conformsto one of the type
instancesof U for Some {0} .

o IfI;=T;fori€1 ...,nand U conformsto Uthenthemethodtype(plle’ ""pn:T”)U

conformsto(pf Ty ... P T")U.
e The polymorphic typela; > : L, < : U, ..., a, > : L < : U,JT conformsto the
polymorphic typela > : Ly < : Uy ..., a, > : L, < - U,]T" if, assuming
L &l ca, &ty 2 Uy, ..., L&Y ca, &Y Uy, onehas T &It : T and L &It : Ly and U; < U for
i€l ..., n
® Type constructors T and T follow asimilar discipline. We characterize T and T by their type
parameter clauses [ap an] and [dp dn], where an ¢ or 4; may include a variance annotation,
a higher-order type parameter clause, and bounds. Then, 7 conformsto 7 if any list [fp tn] --
with declared variances, bounds and higher-order type parameter clauses -- of valid type
arguments for 7’ isaso avalid list of type arguments for 7 and 0ty ...,) &t Tl . 1]
Note that this entails that:
® The bounds on 4 must be weaker than the corresponding bounds declared for 4.
® The variance of 4; must match the variance of 4;, where covariance matches covariance,
contravariance matches contravariance and any variance matches invariance.
® Recursively, these restrictions apply to the corresponding higher-order type parameter
clauses of ¢; and 4.

A declaration or definition in some compound type of class type C subsumes another declaration of the
same name in some compound type or classtype C, if one of the following holds.

® A vaue declaration or definition that defines a name x with type 7 subsumes a value or method
declaration that defines x with type 7", provided T < : T',

* A method declaration or definition that defines a name x with type 7 subsumes a method
declaration that defines x with type 7", provided 7 < : T,

e Atypedias type 11, .., T, = T subsumesatypedlias type 471, .., T, =
TifT=T.

* Atypedeclaration type 1, .., T, > L < U subsumesatypedeclaration type
ATy, ..., Ty > L[< U ifL<:LandU< :U.

® A typeor class definition that binds a type name ¢ subsumes an abstract type declaration t ype
t[T T, > L < UifL&l; t<:U.

Least upper bounds and greatest lower bounds

The (< :) relation forms pre-order between types, i.e. it istransitive and reflexive. Thisalows usto
define least upper bounds and greatest lower bounds of a set of typesin terms of that order. The least

upper bound or greatest lower bound of a set of types does not always exist. For instance, consider the
class definitions:

class Al +T] {}
cl ass B extends Al B]

class C extends Al C

Thenthetypes Al Any], A[A[Any]], AlAlA[Any]]], ... formadescending sequence of upper
boundsfor B and C. Theleast upper bound would be the infinite limit of that sequence, which does
not exist as a Scalatype. Since cases like this are in general impossible to detect, a Scala compiler is
free to reject aterm which has atype specified as aleast upper or greatest lower bound, and that bound
would be more complex than some compiler-set limit [*4].

The least upper bound or greatest lower bound might also not be unique. For instance A with B and
B with A areboth greatest lower boundsof A and B. If there are several least upper bounds or
greatest lower bounds, the Scala compiler is freeto pick any one of them.

[*4]: The current Scala compiler limits the nesting level of parameterization in such bounds to be at
most two deeper than the maximum nesting level of the operand types

3.6.3 Weak Conformance

In some situations Scala uses a more general conformance relation. A type S weakly conformsto atype
T, written S &It; 5,7, if S < : T or both § and 7 are primitive number types and S precedes 7 in the
following ordering.

Byt e Shor t
Short Int
Char I nt
I nt Long

Long Fl oat
Fl oat Doubl e

A weak least upper bound is aleast upper bound with respect to weak conformance.
3.6.4 Compatibility

A type T is compatible to atype U if T (or its corresponding function type) weakly conformsto U
after applying eta-expansion. If 7 isamethod type, it's converted to the corresponding function type. If
the types do not weakly conform, the following alternatives are checked in order:

® view application: there's an implicit view from 7 to U

* dropping by-name modifiers: if U isof theshape = > U’ (and T isnot), T < =, U’

® SAM conversion: if 7 corresponds to afunction type, and U declares a single abstract method
whose type corresponds to the function type U, T < 5, U’

Example

Function compatibility via SAM conversion

Given the definitions

def foo(x: Int => String): Unit
def foo(x: ToString): Unit

trait ToString { def convert(x: Int): String }

The application foo((x: Int) => x.toString) resolvesto thefirst overload, asit's more
specific:

® |Int => String iscompatibleto ToString -- when expecting avalue of type
ToStri ng , you may pass afunction literal from I nt to String, asit will be SAM-
converted to said function;

® ToString isnotcompatibleto I nt => String -- when expecting afunction from
Int to String,youmay notpassa ToString .

3.7 Volatile Types

Type volatility approximates the possibility that atype parameter or abstract type instance of atype
does not have any non-null values. A value member of avolatile type cannot appear in a path.

A typeisvolatileif it fallsinto one of four categories:
A compoundtype T1 with ..with T, {R} isvolatileif one of the following two conditions hold.

1. Oneof T --., Tnisatype parameter or abstract type, or

2. T1isan abstract type and and either the refinement R or atype T’ for j > 1 contributes an
abstract member to the compound type, or

3. oneof Ty ---> Tnisasingleton type.

Here, atype S contributes an abstract member to atype 7 if S contains an abstract member that is also
amember of 7. A refinement R contributes an abstract member to atype 7 if R contains an abstract
declaration which is also a member of 7.

A type designator isvolatileif it isan alias of avolatiletype, or if it designates atype parameter or
abstract type that has avolatile type as its upper bound.

A singletontype P.type isvoldatile, if the underlying type of path 2 isvolatile.

An existential type 7 f or Some { O} isvolatileif 7 isvolatile.

3.8 Type Erasure

A typeiscalled generic if it contains type arguments or type variables. Type erasure is a mapping from
(possibly generic) types to non-generic types. We write |T | for the erasure of type 7. The erasure
mapping is defined as follows.

® Theerasure of an aliastypeisthe erasure of itsright-hand side.

The erasure of an abstract type is the erasure of its upper bound.

The erasure of the parameterized type scal a. ArraylT1 is scal a. ArraylITl].

The erasure of every other parameterized type 71T, ..., Talis T,

The erasure of asingleton type P. t ype isthe erasure of the type of 7.

The erasure of atype projection T#x is | T| #x .

The erasure of acompoundtype T1 with ... with T, {R} istheerasureof theintersection
dominator of Iy ---> T'n,

The erasure of an existential type 7 f or Some {C} is|Tl.

The intersection dominator of alist of types 7's ---> T is computed as follows. Let Tip ---» T, be the
subsequence of types I'; which are not supertypes of some other type 7. I this subsequence contains a
type designator T'. that refers to a class which is not atrait, the intersection dominator is 7. Otherwise,
the intersection dominator is the first element of the subsequence, T;,

4.1 Basic Declarations and Definitions
TODO

5.1 Classes and Objects

Classes and Objects

6.1 Expressions
TODO

7.1 Implicits

TODO

8.1 Pattern Matching

TODO

9.1 Top-Level Definitions

Top-Level Definitions

10.1 XML Expressions and Patterns

TODO

11.1 Annotations
TODO

12.1 The Scala Standard Library

TODO

13.1 Syntax Summary

TODO

14.1 References
TODO

15.1 Changelog

TODO

